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Abstract: 

The multi-objective scheduling optimization problem is one of the important research problems in 

intelligent vehicle scheduling systems. For scheduling optimization problem of seafood intelligent 

vehicles, a scheduling optimization model based on the Dynamic complex Neutrosophic Particle Swarm 

(DNPS) is proposed. Experimental comparison with traditional genetic and immune was conducted, and 

the experimental data showed that the average distance was shortened by 1.15km, the average waiting time 

was shortened by 56s in the process of seafood intelligent vehicle scheduling. It can effectively ensure the 

freshness problem of seafood and improve the quality of delivery service. 

Keywords:Scheduling optimization,Dynamic particle swarm,Complexneutrosophic set, Multi-objective 

 

I. INTRODUCTION 

 

In the intelligent vehicle research and application fields, the problem of scheduling optimization of 

multi-objective intelligent vehicles has become a hot and difficult problem for research
[1]

. In industry, 

automatic guided vehicles can improve cargo handling efficiency and reduce production costs in the 

operation of automated warehouses, intelligent ports, terminals, workshops
[2]

. In the transportation of 

terminal freight intelligent vehicles, the presence of special cargoes such as fresh and dangerous goods 

increases the difficulty of scheduling optimization problems of intelligent vehicles
[3]

. In foreign countries, 

some scholars use swarm intelligence such as genetic and immune to carry out the path optimization 

problem of storage and transportation vehicles
[4]

. The behavior of the whole population is coordinated by 

collecting and analyzing local information and using it to solve problems that are difficult to formalize 

models and complex combinatorial optimization problems that are difficult or impossible to solve exactly. 

Pollaris researched Iterated local search for the capacitated vehicle routing problem with sequence based 

pallet loading and axle weight constraints
[5]

. Swarm intelligence are widely used in scheduling and 

scheduling optimization problems due to their superiority in search. Masdari et al. studied the scheduling 

of particle swarm in cloud computing
[6]

. Hjp studied Particle swarm optimization with time buffer insertion 

for robust berth scheduling
[7]

. Islam combined particle swarm optimization (PSO) and variable 

neighborhood search (VNS) and proposed a new hybrid metaheuristic to solve the cluster vehicle path 

CluVRPproblem
[8]

. The domestic research on intelligent vehicle path optimization problem started late but 
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developed rapidly. Lu and Teng et al. did a thorough study on vehicle path planning and optimization for 

storage complex operations and hazardous materials transportation, and achieved good application 

results
[9-10]

.Ge used the Dynamic Event-Triggered Scheduling and Platooning Control Co-Design for 

Automated Vehicles Over Vehicular Ad-Hoc Networks
[11]

. All these studies are devoted to the direct use 

of improved swarm intelligence for scheduling problems and scheduling optimization problems, providing 

more stable and better search performance. However, for multi-objective optimization, the weights of the 

objectives are only set using empirical values, and no data analysis and decision is given for the weights of 

the objectives. neutrosophic set gives a reasonable basis for the weight setting of multi-objectives, and the 

existing research on neutrosophic set. Jin proposed a flexible job shop scheduling (TLBO) based on neutral 

sets, which gives a modeling and optimization method for IPPS problems with uncertain 

processing
[12]

.LUU applied the neutrosophic set to a multi-objective green supplier decision problem
[13]

. It 

can be seen that the neutrosophic set has good adaptability for solving multi-objective optimization 

problems. For the multi-objective vehicle scheduling optimization problem, different values of weight 

settings have a certain influence on the convergence speed of the swarm intelligence. Therefore, in this 

study, the objective is firstly analyzed by using the CMI set and used in the objective function of the 

algorithm to adapt the vehicle scheduling optimization with different objectives. 

 

II. PROBLEM DESCRIPTION 

 

The neutrosophic fuzzy set contains a total of three affiliation functions, which are true value affiliation 

function, uncertain affiliation function and distortion value affiliation function, each belongs to the [0,1] 

interval, and the sum of the three affiliation functions belongs to the [0,3] interval, which has a larger 

affiliation space and is more suitable for describing uncertain fuzzy information compared with the previous 

fuzzy sets and intuitionistic fuzzy sets
[14-15]

. In the study of intelligent vehicle path problems, decision 

makers often face some fuzzy and uncertain choice information for decision making, and sometimes 

intelligent vehicles give the weights between attribute criteria, but more often, it is never possible to obtain 

the exact attribute weights of alternative paths, and the study of path selection problems, a class of 

multi-criteria decision problems, is particularly important under these conditions. 

 

There are two problems of multi-objective decision making and scheduling optimization for the 

intelligent vehicle scheduling problem of fresh and dangerous goods at terminals. The scheduling 

objectives for deciding smart vehicles mainly include features such as delivery cost, customer receipt time, 

green and low-carbon, etc. In this case, in addition to the commonly used features, two additional features, 

cargo loss and customer satisfaction, are added for fresh food delivery in multiple distribution centers at 

the terminal. The importance of features is not the same for different goods and different distribution 

centers, so how to give the target of final goods distribution reasonably is the first link to be solved. Here, 

according to the grade rating and weight setting of each feature given, a reasonable decision is given by 

using neutrosophic. On this basis, based on the above decision results, particle swarm with inertia factor is 

used to realize the link of multi-objective scheduling optimization. For the intelligent vehicle scheduling 

problem at the terminal, the vehicles need to deliver different goods to n storage centers from the starting 

point. For each storage center, the starting point is the location of the cargo source, and there may be 1 or 

more sections to pass through. If the goods are delivered to both the nth and n+1th storage center from the 
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starting point, then for the nth storage center, its road section can be set as the road section n from the 

starting point to n, while for the nth+1st storage center, it is the road section n plus the road section n+1. 

Here the order of distribution centers is relatively uncertain, so the road section is not determined. When an 

intelligent vehicle starts from the starting point, the scheduling result determines its direction and travel, 

and each intelligent vehicle has an independent travel route. In the overall scheduling, the conditions to 

satisfy the optimization scheme are set according to the specific conditions of the scheduling optimization 

problem, and the target parameters of the goods are ensured to be satisfied during the delivery process. 

 

III. MODEL ESTABLISHMENT 

 

The whole solution is divided into two main parts, firstly, the decision phase for the multi-objective 

complex neutrosophic fuzzy set. The decision objective vectors generated in the first stage for different 

storage centers are used as velocity vectors for the particle swarm scheduling optimization model with 

inertia factors to design and implement the scheduling model. 

 

3.1 Multi Objective Intelligent Decision Model 

 

The running path of the intelligent vehicle is divided into 𝑚 segments according to the optional path, 

𝑅 =  𝑅𝑖  𝑖 = 1,2,… ,𝑚  is the segment, 𝑚 is the number of segments, the length of the segment where 

each particle is located constitutes an m-dimensional vector 𝑋𝑖,𝑗 = {𝑥1,𝑗 , 𝑥2,𝑗 ,… , 𝑥𝑚 ,𝑗 }. Denote the set of 𝐽 

storage centers as 𝑁 =  𝑛𝑗  𝑗 ∈ 𝐽 . Consider the five factors influencing the arrival of each storage center 

mainly including price/cost(𝐹1), urgency(𝐹2), security factor (𝐹3), cargo loss (𝐹4) and green low-carbon(𝐹5), 

and generate the factor vector 𝐹 =  𝐹1,𝐹2,𝐹3 ,𝐹4,𝐹5 ,where the evaluation rank and importance weight of 

each factor of each storage center are different, the interval-valued neutral hesitation set of each factor's 

evaluation rating is 𝐿𝑆 =  𝑉𝐿, 𝐿,𝐹,𝐺,𝑉𝐺 , respectively, and it is assumed that the fuzziness is evaluated 

by the scheduling team based on 𝑜 importance of 𝑞 ratings of 𝑃 factors affecting 𝐽 storage centers; 

where the ratings and importance of the influencing factors are evaluated using the interval-valued 

complex fuzzy set (IVCNS) method is used to describe the ratings and importance of the influencing 

factors. The steps of the proposed multi-objective routing optimization decision-making (MORODM), as 

shown in Equation 1. 

𝐹𝑗 ,𝑝= 𝐹𝑗
𝑠 ,𝐹𝑗

𝑏  . 𝑒𝑗𝜋 [𝜑𝑠(𝑝),𝜑𝑏(𝑝)]               (1) 

 

Where, the criteria for the influencing factors are 𝐹𝑗 ,𝑝 . Here,𝑗 represents the 𝑗th distribution center, 𝑠 

represents the minimum value, 𝑏 represents the maximum value, 𝑃 represents the 𝑃th factor,𝜑𝑠(𝑝) 

represents the minimum value derived from the evaluation of the factor, and 𝜑𝑏(𝑝) represents the 

maximum value derived from the evaluation of the factor. Here the impact factor indicators are given using 

the IVCNS method. Where the interval wise set of the rank assessment is denoted, as shown in Equation 2. 

 

𝑊𝑝 ,𝑞 =  𝑊𝑝
𝑠 ,𝑊𝑝

𝑏  . 𝑒𝑗𝜋 [𝜑𝑠(𝑞),𝜑𝑏(𝑞)]           (2) 

The integration impact factor of the jth distribution center is given by integration, as shown in Equation 

3. 
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𝐹𝑗 =
1

𝑝
(𝐹𝑗 ,1.𝑊1,𝑞𝐹𝑗 ,2.𝑊2,𝑞…𝐹𝑗 ,𝑝 .𝑊𝑝 ,𝑞)   (3) 

 

3.2 Model Distance Calculation 

 

For a factor in the above complex neutrosophic multi-objective decision model, when two decision 

makers give two different evaluated values, a neutrosophic distance is generated between the two 

evaluated values. For two values 𝐹𝑗 ,𝑠 and 𝐹𝑗 ,𝑡  of this factor 𝐹𝑗 , the distance is given using the Manhattan 

distance as shown in Equation 4. 

 

𝐷(𝐹𝑗 ,𝑠 ,𝐹𝑗 ,𝑡) =  𝐹𝑗 ,𝑠
𝑠 − 𝐹𝑗 ,𝑡

𝑠 ,𝐹𝑗 ,𝑠
𝑏 − 𝐹𝑗 ,𝑡

𝑏  . 𝑒𝑗𝜋 [𝜑𝑠
𝑠 𝑝 −𝜑𝑡

𝑠 𝑝 ,𝜑𝑠
𝑏 𝑝 −𝜑𝑡

𝑏 𝑝 ]       (4) 

 

Here, 0 ≤ 𝐷(𝐹𝑗 ,𝑠 ,𝐹𝑗 ,𝑡) ≤ 1,𝐷(𝐹𝑗 ,𝑠 ,𝐹𝑗 ,𝑡) = 𝐷(𝐹𝑗 ,𝑡 ,𝐹𝑗 ,𝑠), 𝐷(𝐹𝑗 ,𝑠 ,𝐹𝑗 ,𝑡) = 0, when  𝐹𝑗 ,𝑡 = 𝐹𝑗 ,𝑠,The values 

given by different decision makers can be measured by the distance and similarity between the two 

measures of their degree of difference. The values after discretizing their distances can be used as other 

particles of this factor to participate in the optimization search of the model. 

 

3.3 Scheduling Dynamic Particle Swarm Optimization Model 

 

For the multi-objective path optimization problem, an 𝑚-dimensional vector is used, i.e., a population 

of 𝑚 road sections with a population of 𝐽 distribution center particles. At a certain moment 𝑡: the 

position of the 𝑗th particle is an 𝑚-dimensional vector 𝑋𝑖,𝑗 (𝑡) = {𝑥1,𝑗 , 𝑥2,𝑗 ,… , 𝑥𝑚 ,𝑗 }, and the flight 

velocity of the 𝑗th particle is also an m-dimensional vector 𝑉𝑖 ,𝑗  𝑡 = 𝐹𝑖 ,𝑗 ,𝑝(𝑡), which is fitted according to 

the CIW hesitation set distribution center's influence factor, which constitutes a 𝐽-dimensional vector 

𝑉𝑖,𝑗 (𝑡) = {𝑣1,𝑗 , 𝑣2,𝑗 ,… , 𝑣𝑚 ,𝑗 , } of 𝐽 storage centers in 𝑚 road sections. The vector is used as the flying 

speed of the particles in 𝑚 road sections, where the vector values of 𝑘 road sections belonging to the 

same distribution center are the same. The optimal position (i.e., the individual extremum) searched so far 

by the 𝑖  th particle is 𝑇𝑖 = (𝑡𝑖 ,1, 𝑡𝑖 ,2,… , 𝑡𝑖 ,𝑚), and the optimal position (i.e., the global extremum) 

searched so far by the whole particle population is 𝑇𝑔 = (𝑡𝑔,1, 𝑡𝑔 ,2,… , 𝑡𝑔 ,𝑚), the objective function 𝑓(𝑖) 

calculates the fitness 𝑓(𝑋𝑖 ,𝑗 (𝑡)) of each particle, and the measures the merit of the particle according to 

the fitness size. 

 

where the particle is updated using the inertia factor as in Equation 5. 

 

 
𝑉𝑖,𝑗  𝑡 + 1 = 𝜔𝑉𝑖,𝑗  𝑡 + 𝐶1𝑟1  𝑇𝑖 − 𝑋𝑖,𝑗  𝑡  + 𝐶2𝑟2  𝑇𝑔 − 𝑋𝑖,𝑗  𝑡  

𝑋𝑖 ,𝑗  𝑡 + 1 = 𝑋𝑖,𝑗  𝑡 + 𝑉𝑖,𝑗  𝑡 + 1 
   (5) 

 

𝐶1 and 𝐶2 are non-negative constants called learning factors, and 𝑟1 and 𝑟2 are random numbers on 

[0,1]. 𝜔 is the inertia factor, which decreases linearly from the maximum weighting factor 𝜔𝑚𝑎𝑥  to the 

minimum weighting factor 𝜔𝑚𝑖𝑛  as the number of iterations increases. 𝜔𝑚𝑎𝑥  is initially set to 0.9 and 

ω_min is initially set to 0.4. The first term in equation (4) is called the "momentum" part. The first term is 
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called the "momentum" part, which reflects the tendency of the particle to maintain its previous velocity, 

and is therefore also called the "inertia" part. The second term of the first article is the "cognitive" part, 

which reflects the particle's memory or recollection of its own historical experience and represents the 

tendency of the particle to approach its best historical position. The third item of the first article is the 

"collaboration" part of the particle, which reflects the group historical experience of collaboration and 

knowledge sharing among particles, and represents the tendency of the particle to approach the best 

position in the group or neighborhood history. 

 

IV. DESCRIPTIONOFDNPS 

 

Dynamic Neutrosophic Particle Swarm (DNPS) seeks the most optimal solution in the problem space 

based on cross-comparison and analysis between different complex neutrosophic sets of data. Ordinary 

particle swarm do not have the ability to select, crossover and mutate the particles themselves, and it is 

impossible to search the rest of the problem space when the particle cluster is located near some local 

extrema. The DNPS adopts changing the overall initialization scheme and importing crossover and 

mutation to improve the arithmetic power of the basic PSO. The mutation here mainly adopts the method 

of neutrosophic set interval discretization, and the efficient organic integration of the basic PSO with other 

algorithms can not only increase the diversity of the particle swarm to improve the particle arithmetic 

power as well as accuracy. The specific algorithmic procedure is described below. 

 

Step1: Randomly initialize the particle swarm, i.e., randomly assign a location 𝑋𝑖,𝑗 (0) and a velocity 

𝑉𝑖,𝑗  0  to each particle at t=0. 

 

Step2: Calculate the fitness value 𝑓(𝑋𝑖,𝑗 (𝑡)) for each particle, and the vector consisting of the latest as 

of time of all feasible sections of distribution centers is the iterative particle. 

 

Step3: Compare the current fitness value 𝑓(𝑋𝑖,𝑗 (𝑡)) and individual optimal value 𝑓(𝑇𝑖) of each 

particle, if 𝑓  𝑋𝑖,𝑗  𝑡  > 𝑓(𝑇𝑖), then 𝑇𝑖 = 𝑋𝑖,𝑗 (𝑡). 

 

Step4: Compare the current fitness value 𝑓(𝑋𝑖,𝑗 (𝑡)) and the global optimum 𝑓(𝑇𝑔) of each particle, 

if 𝑓  𝑋𝑖 ,𝑗  𝑡  > 𝑓(𝑇𝑔), then 𝑇𝑔 = 𝑋𝑖 ,𝑗 (𝑡). 

 

Step5: Calculate the Manhattan distance D between particles of each generation. 

 

Step6: Discretize the edges of the neutrosophic interval so that the particles in the neutrosophic set are 

mutated. 

 

Step7: Crossover the hesitations in different neutrosophic sets. 

 

Step8: Change the velocity and position of each particle according to the distance D update formula. 
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Step9: If the abort condition is satisfied, output 𝑇𝑔 , otherwise, 𝑡 = 𝑡 + 1,and go to step2. 

 

V. COMPARISION EXPERIMENT 

 

The experiments are based on the parameters of the actual storage center intelligent vehicle scheduling, 

firstly, the vector that determines the speed in the particle swarm is derived according to the neutrosophic 

decision model. Combined with the existing storage center roadway scheduling vectors, the 

multi-objective dynamic complex neutrosophic particle swarm scheduling optimization experiments for 

intelligent vehicles are given. The following comparison data and analysis are given from the experimental 

data, the complex neutrosophic decision and the particle swarm scheduling optimization process with 

inertia factor, and the later genetic and immune. 

 

5.1 Experimental Data 

 

For the decision making part of complex neutrosophic, here, the evaluation level data for multiple 

factors are set as follows: VL=Very Low=[0.1,0.2]𝑒𝑗𝜋 [0.6,0,7], [0.7,0.8]𝑒𝑗𝜋 [0.8,0,9] , [0.6,0.7]𝑒𝑗𝜋 [0.9,1.0] , 

L=Low=[0.3,0.4] 𝑒𝑗𝜋 [0.6,0,7] , [0.6,0.7] 𝑒𝑗𝜋 [0.8,0,9] , [0.5,0.6] 𝑒𝑗𝜋 [0.9,1.0] , F=Fair=[0.4,0.5] 𝑒𝑗𝜋 [0.6,0,7] , 

[0.5,0.6]𝑒𝑗𝜋 [0.8,0.9], [0.5,0.6]𝑒𝑗𝜋 [0.9,1.0], G=Good=[0.7,0.8]𝑒𝑗𝜋 [0.8,0.9], [0.7,0.8]𝑒𝑗𝜋 [0.9,1.0], [0.8,0.9]𝑒𝑗𝜋 [0.9,1.0], 

VG=Very Good=[0.9,1]𝑒𝑗𝜋 [0.8,0.9], [0.9,1]𝑒𝑗𝜋 [0.9,1.0], [0.9,1]𝑒𝑗𝜋 [0.7,0.8]. The interval CMI set of importance 

weights for each factor is 𝑊 =  𝑈𝐼,𝑄𝐼, 𝐼,𝑉𝐼,𝐴𝐼 , where, UI=Unimportant=[0.1,0.2] 𝑒𝑗𝜋 [0.6,0,7] , 

[0.1,0.2]𝑒𝑗𝜋 [0.8,0,9], [0.1,0.2]𝑒𝑗𝜋 [09,1,0],  OI=Ordinary Important=[0.3,0.4]𝑒𝑗𝜋 [0.6,0,7], [0.3,0.4]𝑒𝑗𝜋 [0.8,0,9], 

[0.3,0.4]𝑒𝑗𝜋 [09,1,0] , I=Important =[0.5,0,6]𝑒𝑗𝜋 [0.6,0,7] , [0.5,0,6]𝑒𝑗𝜋 [0.8,0,9] , [0.5,0,6]𝑒𝑗𝜋 [0.9,1.0] , VI=Very 

Import=[0.7,0.8] 𝑒𝑗𝜋 [0.6,0,7] , [0.7,0.8] 𝑒𝑗𝜋 [0.8,0,9] , [0.7,0.8] 𝑒𝑗𝜋 [0.9,1,0] , AI=Absolutely 

Important=[0.9,1.0]𝑒𝑗𝜋 [0.6,0,7], [0.9,1.0]𝑒𝑗𝜋 [0.8,0,9], [0.9,1.0]𝑒𝑗𝜋 [0.9,1.0]. 

 

Datas of the given factor ratings and importance weights are shown in TableI and TableII. The 

16-dimensional particle velocity vectors for 12 distribution centers in some of these multiple sections are 

derived by taking the weighted mean values according to Equation 3, as follows. 

 

TABLE I. Ratings values of Factor 

 
Factor Centers Ratings Values 

𝐹1 

𝑁1 [0.533,0.642]𝑒𝑗𝜋 [0.739,0.819], [0.474,0.566]𝑒𝑗𝜋 [0.913,0.99], [0.31,0.403]𝑒𝑗𝜋 [0.81,0.9] 

𝑁2 [0.210,0.341]𝑒𝑗𝜋 [0.718,0.823], [0.502,0.623]𝑒𝑗𝜋 [0.901,0.982], [0.305,0.498]𝑒𝑗𝜋 [0.823,0.894] 

… … 

𝑁12 [0.721,0.742]𝑒𝑗𝜋 [0.812,0.902], [0.231,0.298]𝑒𝑗𝜋 [0.913,0.990], [0.11,0.173]𝑒𝑗𝜋 [0.634,0.658] 

𝐹2 

𝑁1 [0.6,0.742]𝑒𝑗𝜋 [0.739,0.819], [0.474,0.566]𝑒𝑗𝜋 [0.964,1.0], [0.304,0.473]𝑒𝑗𝜋 [0.891,0.957] 

𝑁2 [0.340,0.415]𝑒𝑗𝜋 [0.758,0.893], [0.7,0.823]𝑒𝑗𝜋 [0.941,0.986], [0.199,0.232]𝑒𝑗𝜋 [0.898,0.976] 

… … 

𝑁𝑗  [0.586,0.552]𝑒𝑗𝜋 [0.912,0.992], [0.431,0.512]𝑒𝑗𝜋 [0.823,0.819], [0.332,0.473]𝑒𝑗𝜋 [0.629,0.780] 

𝐹3 

𝑁1 [0.579,0.562]𝑒𝑗𝜋 [0.739,0.819], [0.424,0.587]𝑒𝑗𝜋 [0.89,0.919], [0.314,0.493]𝑒𝑗𝜋 [0.681,0.797] 

𝑁2 [0.387,0.454]𝑒𝑗𝜋 [0.622,0.732], [0.698,0.720]𝑒𝑗𝜋 [0.871,0.892], [0.295,0.308]𝑒𝑗𝜋 [0.962,0.996] 

… … 

𝑁12 [0.621,0.723]𝑒𝑗𝜋 [0.931,1.0], [0.331,0.390]𝑒𝑗𝜋 [0.803,0.82], [0.221,0.317]𝑒𝑗𝜋 [0.637,0.608] 
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𝐹4 𝑁1 [0.569,0.629]𝑒𝑗𝜋 [0.893,0.9], [0.424,0.516]𝑒𝑗𝜋 [0.939,1.01], [0.30,0.41]𝑒𝑗𝜋 [0.887,0.956] 

 𝑁2 [0.760,0.841]𝑒𝑗𝜋 [0.528,0.693], [0.312,0.473]𝑒𝑗𝜋 [0.971,0.999], [0.21,0.306]𝑒𝑗𝜋 [0.826,0.897] 

 … … 

 𝑁12 [0.691,0.734]𝑒𝑗𝜋 [0.878,0.994], [0.421,0.598]𝑒𝑗𝜋 [0.863,0.887], [0.21,0.387]𝑒𝑗𝜋 [0.548,0.606] 

𝐹5 𝑁1 [0.508,0.621]𝑒𝑗𝜋 [0.734,0.843], [0.491,0.542]𝑒𝑗𝜋 [0.933,1.0], [0.432,0.498]𝑒𝑗𝜋 [0.83,0.92] 

 𝑁2 [0.382,0.492]𝑒𝑗𝜋 [0.628,0.733], [0.629,0.721]𝑒𝑗𝜋 [0.9,0.972], [0.345,0.409]𝑒𝑗𝜋 [0.833,0.854] 

 … … 

 𝑁12 [0.603,0.714]𝑒𝑗𝜋 [0.722,0.802], [0.231,0.298]𝑒𝑗𝜋 [0.823,0.819], [0.311,0.472]𝑒𝑗𝜋 [0.763,0.858] 

 

TABLE II. The weight of Factors 

 
Centers Factor Weight values 

𝑁1 

𝐹1 [0.097,0.103]𝑒𝑗𝜋 [0.138,0.172], [0.103,0.176]𝑒𝑗𝜋 [0.187,0.190], [0.641,0.687]𝑒𝑗𝜋 [0.132,0.165] 

𝐹2 [0.092,0.098]𝑒𝑗𝜋 [0.143,0.184], [0.132,0.203]𝑒𝑗𝜋 [0.174,0.183], [0.601,0.672]𝑒𝑗𝜋 [0.163,0.158] 

𝐹3 [0.13,0.154]𝑒𝑗𝜋 [0.122,0.198], [0.174,0.198]𝑒𝑗𝜋 [0.094,0.124], [0.534,0.643]𝑒𝑗𝜋 [0.163,0.158] 

𝐹4 [0.098,0.172]𝑒𝑗𝜋 [0.097,0.102], [0.231,0.243]𝑒𝑗𝜋 [0.091,0.119], [0.568,0.626]𝑒𝑗𝜋 [0.103,0.134] 

𝐹5 [0.193,0.245]𝑒𝑗𝜋 [0.172,0.196], [0.264,0.298]𝑒𝑗𝜋 [0.093,0.194], [0.598,0.674]𝑒𝑗𝜋 [0.133,0.168] 

 

In particle swarm optimization, the population size is set to 30, the number of particles is 100, the 

vector length of particles is 16, C_1 and C_2 are equal and equal to the regular 2. When the iteration 

reaches the maximum number of iterations or the deviation of the solution satisfies the requirement that the 

average time difference of scheduling is less than 2s, the program is aborted. 
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0.14
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5.2 Experimental Results 

 

In order to avoid the precocious phenomenon that occurs in multi-objective optimization problems, the 

inertia factor is introduced into the dynamic complex neutrosophic particle swarm scheduling optimization. 

The data shows that the scheduling optimization based on neutrosophic particle swarm, compared with 

genetic algorithm, runs the program efficiently due to the absence of crossover and mutation operations in 

genetic algorithm. In comparison with genetic algorithm(GA) and immune algorithm(IA), it is easier to 

search for the global optimum and less likely to fall into the local optimum solution. 

 

For the distribution of goods in 16 sections of 12 distribution centers, after one month of distribution 

plan optimization, the comparison of the distribution time, distribution satisfaction, and green low-carbon 

index of each distribution center is shown in Fig. 1 using the DNPS based particle scheduling method with 
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genetic and immune. The experiment shows that among the three algorithms, the distribution time 

optimization rate of dynamic neutrosophic particle swarm is 6%, the satisfaction rate is increased by 8.9%, 

and the green low-carbon index is increased by 12%, which achieves the expected effect. 

 

 
 

Fig 1: Comparison of DNPS, immune and genetic 

 

The average routing times over 100 iterations of the three methods were compared and are shown in 

Figure 2. As can be seen from Figure 2, the average routing time of DNPS is lower than that of the GA and 

IA algorithms, although the time of DNPS iterations is slightly longer than that of the other methods. 

 

 
 

Fig 2: Comparison of optimization process 

 

Population diversity is an important indicator to ensure that it can find the optimal solution. The 

population diversity oscillogram is shown in Figure 3. In the oscillogram of population diversity of the 

iterations, the immune has a certain advantage in terms of the average diversity of the three methods, but 

the optimized DNPS has slightly more population diversity at the peaks than the others. The population 

diversity of the genetic has more values at the peaks and valleys. 
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Fig 3: Population diversity 

 

VI. CONCLUSION 

 

With the continuous progress of driverless technology and the development of smart vehicle 

application fields, the path design of smart vehicles in different fields needs further research. Good path 

planning capability is an important indicator for the wide application of smart vehicles and is crucial to 

meet the application requirements. In order to better serve customers and ensure the usability and 

versatility of smart vehicles, this study proposes a multi-objective path planning scheme for smart vehicles. 

In addition, we give a CMI particle swarm to find the optimal solution for the path of smart vehicles. The 

main contributions of this study are as follows. 

 

•Based on the multi-objective intelligent vehicle scheduling problem, a multi-objective dynamic 

complexneutrosophic particle swarm scheduling optimization is studied, and a multi-objective decision 

method for complexneutrosophic hesitant set is given to fit the objective vector of multiple storage centers. 

Different weights of the objectives and distance calculation analysis are given in the method, and the case 

study shows that the model can guarantee the objectivity of the optimization objectives. 

 

•In order to get the path that satisfies the scheduling objective, the velocity vector and inertia factor of 

the particle swarm are given for iteratively generating the sequence of scheduling paths for intelligent 

vehicles with multiple storage centers and variable road sections based on the objective vector of multiple 

storage centers. 

 

•Comparing with the traditional genetic algorithm and immune algorithm, the results show that the 

method is highly adaptable to the multi-storage center intelligent vehicle scheduling problem. The path 

sequence obtained in this study can effectively improve the scheduling efficiency, save the scheduling cost 

and have better customer satisfaction. However, the weights of the multi-objective part need to be decided 

in combination with the decision maker's questionnaire, which means that the implementation of the thesis 

model needs to be better intelligent. 
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•This study adopts the particle swarm combined with the CMI set, which gives the inertia factor and 

speeds up the convergence of the original particle swarm. It is simple and practical, with wide application 

prospects, and can be used as a reference for other multi-objective path finding problems. 

 

•In this paper, the model is simulated and studied based on the actual data of the terminal multi-storage 

center. The simulation results verify the effectiveness and feasibility of the model, which can be used in 

the scheduling path finding of multiple intelligent vehicles. 

 

Finally, it is worth noting that the approximate optimal solution of the path optimization problem can 

be obtained by using the proposed CMI particle swarm. However, the real-time performance needs to be 

improved, and the timeliness guarantee for the real-time scheduling problem is a research direction for the 

next step. Secondly, this study only considers the multi-objective scheduling optimization problem of one 

intelligent vehicle, and the coordination and cooperation problem between multiple intelligent vehicles is 

also one of the directions being studied. 
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