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Abstract: 

In this study, using sea surface temperature and sea surface height data, the extreme gradient boosting 

(XGBoost) parallel model was selected through multi-model comparison to predict the three-dimensional 

temperature and salinity information. The 58 layers of global temperature and salinity information were 

forecasted within 1 minute, and the mean absolute error (MAE) was 0.319℃ and 0.05psu, respectively. In 

particular, the prediction accuracy of the thermocline is poor, about 0.65°C, and the mid-deep layer is 

higher, about 0.3°C, which fully reflects the sensitivity of the model to the stratified structure of the 

ocean. 

Keywords: Three-dimensional temperature and salinity, Satellite remote sensing data, XGBoost, Parallel, 

fine. 

 

I. INTRODUCTION 

 

The ocean occupies 71% of the earth’s surface area and is one of the main factors regulating global 

climate development. As an important factor of ocean hydrological conditions, the ocean temperature and 

salinity structure is an important content of oceanography, and it also has an important impact on 

meteorology, navigation and combat. 

 

In the early stage, the three-dimensional temperature and salinity information retrieval based on 

satellite remote sensing data mainly used dynamic methods 
[1-3]

 and statistical analysis methods
[4-6]

. The 

dynamic methods include: one is to use numerical models or dynamic constraints to establish a mapping 

between sea surface and underwater temperature and salinity information; the other is to invert the 

underwater three-dimensional temperature and salinity field based on the simplified dynamic model of the 

surface quasi-geostrophic equation. Among them, the most popular ocean numerical models include: 

MOM4 (Modular Ocean Mode 4.0), MITgcm (Massachusetts Institute of Technology Generalized 

Coordinate Model), NCOM (U.S. Navy Coastal Ocean Model), NLOM (U.S. Navy Coastal Ocean Model), 
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MICOM (Miami Equal Density Surface Coordinate Ocean Mode), HYCOM (Mixed Coordinate Ocean 

Mode), FVCOM (Limited Volume Nearshore Ocean Mode), POMgcs (Princeton University Generalized 

Coordinate Ocean Mode), ROMs (Regional Ocean Simulation System) and HANSOM ( (Hamburg 

University shelf ocean model), etc., all of which can simulate three-dimensional changes in ocean 

temperature and salinity. Wang 
[7] 

and Liu et al. 
[8] 

used the “i-SQG” dynamic method to invert the 

temperature and salinity structure of the ocean and the subsurface density/flow field anomalies in a small 

area of the Gulf of Mexico, respectively. 

 

Statistical methods are mainly divided into regression statistical methods, empirical orthogonal 

function decomposition and variational methods. Carnes
 
et al. 

[9]
 used the least squares regression method 

to invert the temperature and salinity fields in the Northwest Pacific and Northwest Atlantic, and the 

inversion error was small. The regression analysis method adopted by Fox et al. 
[10]

 and Guinehut et al.
 [11]

 

reconstructed the ocean three-dimensional temperature field with high temporal and spatial resolution; 

Maes 
[12]

 used the multivariate empirical orthogonal function-decomposition (m-EOF) method to obtain 

the coupled mode of temperature and salt changes, and further obtained the localized temperature and salt 

relationship; Fujii et al. 
[13]

 applied the vertical combined temperature and salt empirical orthogonal 

function EOF to the three-dimensional variational model, resulting in the error of the three-dimensional 

temperature field reconstructed from the sea surface temperature and height at about 1℃, and it can better 

reflect the El Niño and the La Niña process; Xiao X. J. et al. 
[14]

 developed an assimilation method based 

on the mutual constraint of sea surface height and sea surface temperature data under the three-dimensional 

variational framework (3DVAR), which effectively improved the estimation of ocean underwater 

temperature and salinity. The Ocean Variational analysis system OVALS (Ocean Variational analysis 

system) developed by the Institute of Atmospheric Physics, Chinese Academy of Sciences
 [15]

 can also 

effectively improve the simulation effect of underwater temperature and salinity fields. 

 

The rapid development of artificial intelligence has also been widely used in the field of marine 

environment. It effectively improves the black box nature and expensive calculation cost of the dynamic 

method, and at the same time, it can appropriately avoid the disadvantages of statistical methods that are 

too dependent on long-term historical data and the chaotic nature of ocean development is difficult to 

capture. Wu et al. 
[16]

 used a self-organizing neural network model (SOM) based on sea surface 

temperature anomaly (SSTA) and sea surface height anomaly (SSHA) to invert the internal temperature 

structure of the North Atlantic Ocean; Su et al. proposed methods such as support vector machine (support 

vector machine)
 [17]

 and geographically weighted regression (GWR) 
[18] 

based on satellite sea surface data 

to reconstruct the underwater three-dimensional temperature field of the Indian Ocean; Yang X. et al. 
[19]

 

used the random forest regression model to invert the ocean subsurface temperature field in different 

seasons based on SST, SSH, SSS, and SSW data; Ali et al. 
[20]

 used artificial neural networks to evaluate 

the temperature structure of the Arabian Sea from SST, SSH, and SSW data.  

 

The previous researches focused on realizing the inversion of underwater temperature and salinity 

information, using data from a certain year during the research period to evaluate the accuracy of the 

model. In this way, higher inversion accuracy will be obtained, but the time series prediction of 
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temperature and salinity field is lacking, and the inversion accuracy of the internal structure of the ocean 

has not been explored in depth. However, unmanned submersible vehicle mission planning, safe and 

concealed navigation, target detection, etc. urgently need the support of future time sequence, fine and 

efficient three-dimensional temperature and salinity field information, and previous research cannot meet 

the needs of this actual operation. Based on the data of sea surface temperature and sea surface height, the 

XGBoost model is selected to use parallel computing to realize the high-efficiency and high-precision 

analysis and prediction of the future time series underwater three-dimensional temperature and salinity 

field through the comparative analysis of multiple models in different dimensions, and use the actual 

measurement data of Argo to evaluate the accuracy of the model, especially the accuracy assessment of the 

analysis and prediction of the internal stratification of the ocean. The XGBoost parallel model in this study 

focuses on the forecast of time series three-dimensional temperature and salinity information, and 

significantly improves the forecasting efficiency under the premise of ensuring accuracy, which can 

provide efficient and precise marine environment forecast information guarantee for offshore operating 

platforms. 

 

II. STUDY AREA AND DATA 

 

2.1 Study Area 

 

Global Ocean prevalence of matter and energy transport and air-sea exchange, have a significant role 

in regulating climate change. The study area of this paper is the world (-89.75°~89.75°N, 

0.25°~359.75°E). 

 

2.2 Data 

 

The surface satellite remote sensing data and Argo measured data used in this article are as follows: 

 

The sea surface temperature data (SST) is from the Advanced Very High Resolution Radiometer 

(AVHRR) and the measured data using the optimal interpolation algorithm (optimum interpretation, OI 

fusion) to obtain the grid product. The time resolution is daily, the spatial resolution is 0.25°×0.25°. 

 

The Sea Surface Height data (SSH) is multi-satellites (Jason-3, Sentinel-3A, HY-2A, Saral/AltiKa, 

Cryosat-2, Jason-2, Jason-1, T/P, ENVISAT, GFO, ERS1/2, etc.) merged grid delay product distributed by 

CMEMS. The time resolution is daily, the spatial resolution is 0.25°×0.25°. 

 

Argo (Array for Real-time Geostrophic Oceanography) grid data contains subsurface temperature and 

salinity information, which is used for model training and prediction. The time resolution is monthly, the 

spatial resolution is 1°×1°, and the depth is 58 layers covering 0m~1975m. 
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III. METHOD 

 

3.1 Data Preprocessing 

 

Considering the time coverage of SST, SSH and Argo data, this study selects the data from 2004.01 to 

2019.12 for analysis. In order to ensure the training efficiency and accuracy of the model, the data needs to 

be preprocessed. 

 

 

 

Fig 1: Distribution map of SSTA, SSHA, Argo-TA and Argo-SA in July 2019 

 

The first is the unified processing of spatio-temporal resolution. The monthly average of SST and SSH 

data and the nearest spatial interpolation of Argo data are performed to obtain 0.25°×0.25° monthly SST, 

SSH and Argo data, respectively. The second is to remove the influence of climatic seasons. SST, SSH, 

Argo temperature and Argo salinity data respectively remove the average climatological field in different 

months from 2004.01 to 2019.12, and obtain the abnormal values of each parameter (SSTA, SSHA, Argo-

TA, Argo-SA). Figure 1 shows the distribution of SSTA (Fig 1a), SSHA (Fig 1b), Argo-TA (Fig 1c) and 

Argo-SA (Fig 1d) in July 2019 

 

3.2 Comparative Analysis of Different AI Models 

 

In order to ensure the effectiveness and accuracy of the artificial intelligence model, this article first 

selects two sets of data for model comparison experiments. Use the 10m and 70m deep preprocessed data 

for 15 years from 2005.01 to 2018.12 as the training data, and the 10m and 70m depth data from 2019.01 

to 2019.12 as the test data, and use the random forest regression model (RF) with 10 trees respectively. 

With XGBoost model training and testing, multi-dimensional comparison of accuracy, time, and hardware 

consumption is performed to facilitate the selection of a better model. The comparison results of the two 

models at the depth of 10m and 70m are shown in Table I and Table II, respectively. The XGBoost model 

is better than the RF model in terms of accuracy, time and hardware consumption under the same 

parameters. Therefore, this paper chooses the XGBoost model. 
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TABLE I. Comparison of 10m depth results between RF and XGBoost models 

 

models 
Training 

time /s 

Model size  

/G 

Trainingmemory 

/G 

Testing 

time 

/s 

MAE of 

temperature 

/℃ 

MAE of 

salinity 

/psu 

Testing 

memory 

/G 

RF(10trees) ~966 ~66 ~130 ~388 ~0.436 ~0.137 ~100 

XGBoost(10trees) ~400 ~0.00017 ~20 ~3.1 ~0.375 ~0.116 ~0.78 

 

TABLE II. Comparison of 70m depth results between RF and XGBoost models 

 

models 
Training 

time /s 

Model size 

/G 

Training 

memory /G 

Testing 

time 

/s 

MAE of 

temperature 

/℃ 

MAE of 

salinity 

/psu 

Testing 

memory 

/G 

RF(10trees) ~1000 ~66 ~130 ~477 ~0.702 ~0.109 ~100 

XGBoost(10trees) ~380 ~0.00017 ~20 ~3.5 ~0.599 ~0.096 ~0.78 

 

3.3 Model Training  

 

The GBDT model is an iterative decision tree ensemble algorithm proposed by Jerome Friedman 
[21]

. 

The extreme gradient boosting (XGBoost) is an optimized GBDT model, which has the advantages of fast 

calculation speed and high accuracy, and is widely used in ocean remote sensing. Based on the SST and 

SSH data, this study uses the XGBoost model to realize the analysis and forecast of the global three-

dimensional temperature and salinity field. Figure 2 shows the specific process of the model. The model 

construction process is as follows three steps. First, the 15-year SSTA, SSHA, Argo-TA and Argo-SA data 

from January 2004 to December 2018 are randomly divided into independent training data sets (80%) and 

test data sets (20%), where SSTA and SSHA are used as model input variables, Argo-TA and Argo-SA are 

used as model training and testing labels. The second is to construct the XGBoost training model and 

continuously optimize the model through parameter tuning. The third is the prediction and accuracy 

evaluation of the XGBoost model based on SSTA and SSHA data from January to December 2019. 
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Argo data

(Argo-TA、Argo-SA)

Testing Datasets

Accuracy Evaluation

  

 

 

Fig 2: XGBoost model training and prediction process 

 

Due to the significant differences in temperature and salinity characteristics at different depths, in order 

to ensure the accuracy of the model, this study constructed a temperature XGBoost model and a salinity 

XGBoost model for 58 different depths based on the training data. The temperature (salinity) XGBoost 

model constructed in this study can be calculated in 58-level parallel depth, using a high-performance 

server with 1 PowerEdge T640 MLK motherboard, Intel Xeon Silver 4210R 2.4G (2 x 10-core) CPU, 

8×32G RDIMM 2933MT/s dual-rank memory, which fully guarantees the efficiency and accuracy of 

training and prediction models. 

 

3.4 Model Evaluation  

 

This study uses Mean Absolute Error (MAE), Root Mean Squared Error (RMSE) and R
2
 to evaluate 

the results of temperature (salinity) XGBoost training and prediction models. MAE reflects the actual 

forecast error magnitude, the smaller the MAE, the more accurate the forecast data; RMSE indicates the 

degree of deviation between the predicted value and the true value, the smaller the RMSE, the higher the 

prediction accuracy; R
2
 characterizes the goodness of fit of the model, the larger the R

2
, the better the 

goodness of fit of the model. 

 

(1) MAE 

, mod ,1

N

obs i el ii
Y Y

MAE
N







                                           (1) 

 

Where N  is the number of data, ,obs iY  is the true value of Argo data, and mod ,el iY  is the predicted value 

of the model. 
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(2) RMSE 

 

 , mod ,

1

N

obs i el i

i

RMSE Y Y N


                                                  (2) 

 

Where N  is the number of predictions. 

 

(3) R
2 

 

         

 

 

2

mod ,
2 1

2

,

1

N

el i

i

N
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i

Y Y

R

Y Y














                                                           (3) 

 

Where N is the number of predictions, ,obs iY  is the true value of Argo data, mod ,el iY  is the predicted 

value of the model, andY  is the true mean value of Argo data. 

 

IV. RESULTS AND DISSCUSSION 

 

4.1 Qualitative Analysis 

 

In this study, 58 XGBoost temperature (salinity) prediction models at different depths were trained 

based on SST, SSH and Argo data from 2004 to 2018, and the model was used to analyze and forecast the 

three-dimensional temperature/salinity distribution in 2019. The temperature changes in winter (December, 

January, February) and summer (June, July, August) are more significant, so January and July are selected 

as representative to compare the results of the XGBoost temperature prediction model and Argo 

temperature at different depths so as to visually display the temperature prediction effect of the model. 

 

Fig 3 and 4 show the spatial distribution of global ocean temperature based on the XGBoost 

temperature prediction model (left) and Argo data (right) at different depths of 0m, 100m, 500m and 100m 

in January (Fig 3) and July (Fig 4), respectively. Obviously, the global surface and underwater temperature 

distribution of the XGBoost temperature prediction model is consistent with the Argo temperature 

distribution at the same depth. It shows that the prediction results of the model can reflect the temperature 

distribution characteristics of different sea areas around the world. Secondly, the temperature 

characteristics predicted by the model at different depths are similar to those of Argo. Both showed that the 

temperature variation range and spatial distribution difference at depths of 0m and 100m were large, while 

the temperature variation range and spatial distribution difference below 500m decreased. This is because 

the thermal environment inside the ocean gradually stabilizes as the depth increases. 
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Fig 3: XGBoost prediction and Argo temperature distribution of 0m, 100m, 500m and 1000m in January 

2019 
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Fig 4: XGBoost prediction and Argo temperature distribution of 0m, 100m, 500m and 1000m in July 2019 

 

4.2 Quantitative Analysis 

 

The qualitative analysis shows that the temperature predicted by the XGBoost model established in this 

study is very consistent with the temperature distribution characteristics of the Argo data. We will 

quantitatively analyze the model through the model training efficiency and the MAE of temperature and 

salinity. 

 

4.2.1 Model efficiency analysis 

 

The XGBoost parallel model established in this study realizes the prediction of the three-dimensional 

temperature and salinity structure at different depths from January to December 2019. The average single-

layer prediction time of the temperature model is 0.431s, the total prediction time of the 58-layer is 

25.016s, and the MAE is within the range of 0.65℃; the average single-layer prediction time of the salinity 

model is 0.378s, the total prediction time of the 58-layer is 21.944s, and the MAE is in the range of 

0.125psu. It can be seen that the XGBoost parallel model effectively improves model training and 
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prediction efficiency under the premise of ensuring the model accuracy. 

 

4.2.2 Analysis of model temperature and salinity prediction accuracy 

 

In order to evaluate the prediction accuracy of the XGBoost model in different stratified structures of 

ocean temperature and salinity, this paper analyzes the MAE of the temperature and salinity prediction for 

different months and different depths in 2019. 

 

Fig 5a and 5b respectively show the winter (January, blue line), spring (April, orange line), summer 

(July, yellow line) and autumn (October, purple line) Temp-MAE and Salt-MAE curve with depth. It can 

be found that in the same season, Temp-MAE first increases and then decreases in the upper layer (above 

about 300m), and the middle and lower layer (below about 300m) shows a gradual decrease, with a peak at 

about 100m depth, mainly caused by the action of the ocean thermocline; in different seasons, the peak of 

Temp-MAE curve in spring and summer is slightly lower than that in autumn and winter, and the depth of 

the peak is slightly shallower than that in autumn and winter. This is consistent with the results of the 

thermocline distribution in winter and summer discovered by Zhou Y. X. and others 
[22]

. The Salt-MAE 

curve shows a gradually decreasing trend with increasing depth, and there is no significant difference in 

different seasons. 

 

 
 

Fig 5: The Temp-MAE (a) and Salt-MAE (b) predicted by the XGBoost model at different depths in January, 

April, July, and October 2019 

 

In order to further determine the sensitivity of the prediction model to the internal stratification 

structure of the ocean, this study analyzed Temp-MAE and Salt-MAE at different depths of 0m, 50m, 

100m, 300m, 500m, 700m, and 1000m from January to December 2019, respectively as shown in Fig 6a 

and 6b. The surface, Temp-MAE is slightly higher in summer than other seasons and the regularity is not 

obvious, this is because the surface temperature is greatly affected by factors such as rainfall, wind and 

waves; at depths of 50m and 100m, Temp-MAE is slightly lower in spring and summer than in autumn and 

winter, consistent with the results in Fig. 6a, and also related to the distribution of the thermocline; below 

300m, Temp-MAE changes basically steadily, and there is no obvious seasonal difference. In addition, 
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Temp-MAE has a larger value in the depth of 50m and 100m (within the range of 0.5~0.65℃), the 

distribution of Temp-MAE at depths of 0m and 300m is similar, and Temp-MAE below 500m gradually 

decreases with increasing depth. In general, the value of Salt-MAE is relatively small as shown in fig. 6b, 

the distribution of different months at the same depth is stable, and the same month gradually decreases 

with the increase of depth. It can be obtained that the XGBoost temperature model in this paper fully 

characterizes the influence of the thermocline, which can reflect the fine stratified structure of the ocean. 

 

 
 

Fig 6: The Temp-MAE (a) and Salt-MAE (b) predicted by the XGBoost model in different months of 2019 

at depths of 0m, 50m, 100m, 300m, 500m, 700m, and 1000m. 

 

At the same time, we counted the Temp-MAE and Salt-MAE in winter, spring, summer and autumn of 

58 levels from 0m to 1975m, as shown in Table 3. The average values of Temp-MAE in winter, spring, 

summer and autumn are 0.324℃, 0.310℃, 0.312℃ and 0.328℃, respectively. The results also show that 

the temperature prediction accuracy in spring and summer is slightly higher than that in autumn and winter. 

The average values of Salt-MAE in winter, spring, summer and autumn are 0.052psu, 0.051psu, 0.051psu 

and 0.051psu, respectively. The salinity prediction accuracy of this model is high and there is no 

significant difference in different seasons. 

 

TABLE III. The temperature and salinity MAE by the XGBoost model in different depths and 

different seasons in 2019 

 

Depth 

/m 

Temperature MAE /℃ salinity MAE /psu 

Winter Spring Summer Autumn Winter Spring Summer Autumn 

0 0.380  0.372  0.390  0.380  0.119 0.112 0.113 0.118 

5 0.393  0.378  0.392  0.393  0.122 0.114 0.117 0.122 

10 0.373  0.368  0.385  0.375  0.120 0.113 0.115 0.119 

20 0.390  0.382  0.421  0.391  0.115 0.109 0.110 0.114 

30 0.436  0.420  0.471  0.445  0.110 0.107 0.105 0.112 

40 0.502  0.471  0.506  0.514  0.107 0.103 0.102 0.110 

50 0.550  0.524  0.530  0.566  0.103 0.101 0.098 0.106 

60 0.581  0.567  0.554  0.608  0.100 0.097 0.096 0.102 

70 0.600  0.588  0.575  0.633  0.099 0.094 0.093 0.098 
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80 0.623  0.600  0.583  0.645  0.096 0.092 0.091 0.095 

90 0.637  0.596  0.590  0.647  0.092 0.089 0.088 0.092 

100 0.649  0.590  0.592  0.643  0.088 0.086 0.086 0.088 

110 0.645  0.579  0.585  0.635  0.084 0.082 0.083 0.084 

120 0.630  0.570  0.576  0.628  0.080 0.078 0.079 0.081 

130 0.615  0.561  0.565  0.612  0.078 0.076 0.075 0.078 

140 0.599  0.551  0.552  0.597  0.076 0.073 0.073 0.076 

150 0.580  0.538  0.536  0.581  0.075 0.071 0.072 0.074 

160 0.561  0.526  0.521  0.564  0.073 0.070 0.070 0.073 

170 0.544  0.515  0.508  0.546  0.070 0.068 0.068 0.071 

180 0.525  0.505  0.492  0.528  0.068 0.066 0.067 0.070 

200 0.488  0.474  0.458  0.489  0.064 0.063 0.063 0.066 

220 0.455  0.441  0.431  0.453  0.060 0.059 0.060 0.062 

240 0.428  0.414  0.407  0.427  0.057 0.056 0.056 0.058 

260 0.403  0.390  0.388  0.401  0.054 0.053 0.053 0.055 

280 0.383  0.372  0.370  0.381  0.051 0.050 0.051 0.052 

300 0.367  0.356  0.357  0.365  0.049 0.048 0.048 0.050 

320 0.354  0.342  0.345  0.353  0.047 0.046 0.047 0.048 

340 0.342  0.330  0.334  0.340  0.045 0.045 0.045 0.047 

360 0.329  0.320  0.323  0.328  0.044 0.043 0.044 0.045 

380 0.318  0.311  0.314  0.319  0.043 0.042 0.043 0.044 

400 0.309  0.302  0.305  0.310  0.042 0.041 0.041 0.042 

420 0.298  0.293  0.295  0.302  0.040 0.039 0.040 0.041 

440 0.288  0.283  0.285  0.292  0.039 0.038 0.039 0.040 

460 0.279  0.274  0.276  0.282  0.037 0.037 0.037 0.038 

500 0.261  0.255  0.259  0.265  0.035 0.034 0.035 0.036 

550 0.240  0.235  0.238  0.248  0.032 0.031 0.032 0.033 

600 0.225  0.219  0.219  0.233  0.030 0.029 0.029 0.030 

650 0.209  0.205  0.204  0.218  0.027 0.027 0.027 0.028 

700 0.195  0.191  0.190  0.203  0.026 0.025 0.025 0.026 

750 0.182  0.177  0.178  0.190  0.024 0.023 0.024 0.025 

800 0.171  0.165  0.167  0.179  0.023 0.022 0.023 0.023 

850 0.158  0.153  0.155  0.165  0.021 0.021 0.021 0.022 

900 0.147  0.142  0.143  0.152  0.020 0.020 0.020 0.021 

950 0.134  0.130  0.131  0.139  0.019 0.019 0.019 0.020 

1000 0.123  0.119  0.119  0.127  0.019 0.019 0.019 0.019 

1050 0.111  0.109  0.109  0.118  0.018 0.018 0.018 0.019 

1100 0.101  0.100  0.099  0.107  0.018 0.018 0.018 0.019 

1150 0.093  0.092  0.091  0.098  0.018 0.018 0.017 0.018 

1200 0.086  0.085  0.085  0.091  0.017 0.017 0.017 0.018 

1250 0.081  0.079  0.079  0.083  0.017 0.017 0.017 0.017 

1300 0.076  0.074  0.073  0.078  0.017 0.017 0.016 0.017 

1400 0.068  0.065  0.065  0.069  0.016 0.016 0.016 0.016 

1500 0.061  0.059  0.058  0.061  0.015 0.015 0.015 0.015 

1600 0.055  0.053  0.053  0.055  0.014 0.014 0.014 0.015 

1700 0.050  0.048  0.048  0.049  0.014 0.014 0.014 0.014 

1800 0.046  0.044  0.044  0.046  0.013 0.013 0.013 0.013 

1900 0.044  0.042  0.042  0.043  0.013 0.013 0.013 0.013 

1975 0.043  0.041  0.041  0.041  0.013 0.013 0.013 0.013 

Mean 0.324 0.310 0.312 0.328 0.052 0.051 0.051 0.053 
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V. CONCLUSION 

 

This paper carried out a multi-dimensional comparison between the RF and the XGBoost model based 

on the SST and SSH data. The XGBoost parallel model was selected to analyze and forecast global ocean 

three-dimensional temperature and salinity information, combined with Argo temperature and salinity data 

to evaluate the model, including qualitative analysis of temperature prediction effectiveness and 

quantitative analysis of model efficiency and prediction accuracy of different depths and different seasons 

of temperature/salinity according to mean absolute errors. 

 

The results show that: (1) The XGBoost parallel model established in this study can predict the 58-

levels temperature and salinity from January to December 2019 within 30s, which significantly improves 

the efficiency of model prediction. (2) The XGBoost parallel model has a relatively high prediction 

accuracy for global three-dimensional temperature and salinity information, reaching the accuracy of the 

58-layer temperature MAE of 0.319℃, and the salinity  MAE of 0.054psu, where the temperature MAE of 

each layer is within the range of 0.65℃. (3) The spatial distribution characteristics of the XGBoost model 

predicted temperature are consistent with the Argo temperature.The difference in the spatial distribution 

and variation range of the predicted temperature at depths of 0m and 100m are larger, and the difference 

and variation range of the spatial distribution below 500m are reduced, which is related to the gradual 

stability as the depth increases. (4) The accuracy of temperature prediction in spring and summer is slightly 

higher than that in autumn and winter, while the prediction accuracy of the same season decreases first and 

then increases with changes in depth, especially in the vicinity of the thermocline, which is about 0.65°C, 

and the medium-deep layer is better at about 0.3°C.There is no obvious seasonal difference in the accuracy 

of salinity prediction, and it increases with the increase of depth. This is due to the influence of the 

stratified structure of the ocean and the distribution of the internal dynamic environment. 

 

In summary, the XGBoost parallel temperature (salinity) prediction model constructed in this paper has 

significantly improved the prediction efficiency while maintaining high accuracy, and can reflect the 

distribution of ocean temperature stratification structure in detail, accurately and efficiently predict the 

three-dimensional temperature and salinity information f the global ocean, which can provide strong 

technical support for the marine environmental information guarantee urgently needed for offshore 

platform operations. 
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