
Forest Chemicals Review
www.forestchemicalsreview.com
ISSN: 1520-0191
May-June 2022 Page No. 631-647
Article History: Received: 24 February 2022, Revised: 05 April 2022, Accepted: 08 May 2022, Publication: 30 June 2022

631

A Collision Detection and Cloth Simulation

Method Based on Parallel BVH

Huawei Mei
1
, Chenyao Fan

1
, Ronghua Zhang

1*
, Yonggang Liu

2

1
The college of control and Computer Engineering, North China Electric Power University, Baoding, Hebei, China

2
Shijiazhuang water supply Co., Ltd, Shijiazhuang, Hebei, China

*Corresponding Author.

Abstract:

To solve the challenges such as low simulation performance, poor simulation effect, and manual

definition of a collider in the real-time collision in cloth simulation, a collision detection method based on

parallel hierarchical bounding volume hierarchies (BVH) is proposed. Firstly, the advantages and

feasibility of using hierarchical bounding box for collision detection in cloth simulation are analyzed

theoretically; Then AABB bounding box and the sphere bounding box is selected, and a group of BVH

structure bounding boxes is constructed in parallel by using the hierarchical bounding box generation

method based on Morton code; Finally, the computational shader is used to execute in parallel so that

multiple particles update their positions at the same time and traverse the BVH structure of the model.

The experimental results shown in Unity show that this method reduces the tedious work of manually

defining the bounding box, speeds up the collision detection rate, accurately depicts the state when the

cloth collides with the object and is suitable for real-time interactive applications.

Keywords: Cloth Simulation, Collision Detection, Mass-Spring Model, Hierarchical Bounding Box

Technology, GPU Parallel Processing.

I. INTRODUCTION

Collision detection technology is now widely used in 3D games, cloth simulation, virtual fitting, and

other scenes to enhance the fidelity and immersive experience of the scene. Collision detection is an

essential process in cloth simulation. Cloth is different from a rigid body, with unique material and

irregular shape. An efficient collision detection algorithm is needed to improve the real-time and fidelity of

cloth simulation. Many interactive applications define the collider manually to achieve the collision effect.

However, in complex cases, its operation efficiency is low, and it is not easy to ensure the system's

robustness. In cloth simulation, seeking the balance between simulation effect and real-time has become

one of the main problems to be solved in the application of cloth simulation and collision detection in

interactive programs. Therefore, it is vital for applying cloth simulation in an interactive system to

correctly consider the balance between simulation effect and simulation efficiency and improve the

real-time performance of the simulation.

Forest Chemicals Review
www.forestchemicalsreview.com
ISSN: 1520-0191
May-June 2022 Page No. 631-647
Article History: Received: 24 February 2022, Revised: 05 April 2022, Accepted: 08 May 2022, Publication: 30 June 2022

632

At present, the recognized collision detection algorithms use hierarchical bounding box technology [1]

to encapsulate and store object information. Hierarchical bounding box technology (BVH) combines

bounding boxes into a tree structure, and the time complexity becomes log level [2]. If the upper node does

not collide, it is not necessary to judge the following nodes. Standard bounding boxes include Sphere,

AABB (axis-aligned Bounding Box), OBB (Oriented Bounding Box), and k-DOPs (Discrete Orientation

Polymers) [3]. After selecting the bounding box, the next step is to establish the hierarchical bounding box.

There are three construction strategies [4]: top-down construction strategy, bottom-up construction

strategy, and incremental construction strategy. Among them, the top-down method has higher execution

efficiency. Lauterbach [5] et al. Proposed a hierarchical bounding box construction method (LBVH) based

on Morton code, which changed the hierarchical bounding box construction problem into a sorting

problem and realized high-quality bounding boxes at a meager cost. Pantaleoni [6] et al. Extended this

algorithm and improved it by using the spatial correlation of hierarchical grid decomposition (HLBVH),

reducing the computational overhead and memory usage. These algorithms improve the construction and

traversal efficiency of BVH to a certain extent. This paper draws lessons from the core idea of the Morton

code construction method. The bottom-up method mainly highlights the global optimal segmentation

plane. This method starts from the leaf node and combines the elements in pairs according to different

combination methods to form the internal nodes of the hierarchical bounding box until the final root node

is completed. Hu [7] et al. Proposed a method using local density clustering, which constructs a

hierarchical bounding box on the GPU by analyzing the distribution of entity density. The bottom-up

method can often construct high-quality hierarchical bounding boxes, but it is not as fast as the top-down

method. To obtain higher quality bounding box, an incremental method is proposed based on the first two

methods, and its leading research direction also focuses on the optimization strategy. Meister and Bitner

[8] completed the incremental construction method of GPU and improved the construction speed. The

incremental method will be better, but it is not easy to achieve in real-time at the cost of lower execution

speed.

A very efficient dynamic simulation method needs to be used for real-time processing to realize the

dynamic simulation between three-dimensional objects. People have tried various methods to represent

deformable objects in real-time, and many methods based on GPU have been studied to improve the

performance of cloth simulation. Tang et al. [9] proposed a GPU-based streaming algorithm to perform

high-resolution and accurate cloth simulation. They map all components of the cloth simulation pipeline to

the GPU-based kernel and data structure, including time integration, collision processing, and speed

update. Then Tang et al. [10] proposed a parallelizable matrix assembly algorithm for time integration,

which uses the coupling of time and space to accelerate. However, this method uses direct time integration

and forces tiny time steps, which is prone to the problem of overstretching. In 2017, yarn-level cloth

simulation and rendering [11-12] were proposed to simulate more realistic cloth behavior. Tang et al.

[13-14] added the GPU based nonlinear solver to the simulation system and constructed the GPU based

interactive cloth simulation system I-cloth; The cloth simulation system is accelerated by using the similar

characteristics of GPU, and a collision elimination algorithm based on regular cone test and spatial hash is

proposed, which is more accessible to GPU parallel. Recently, Tang et al. [15] proposed a collision

processing scheme for discrete and continuous collision detection using a spatial hash to accelerate the

Forest Chemicals Review
www.forestchemicalsreview.com
ISSN: 1520-0191
May-June 2022 Page No. 631-647
Article History: Received: 24 February 2022, Revised: 05 April 2022, Accepted: 08 May 2022, Publication: 30 June 2022

633

simulation system again. In these methods, based on high-performance GPU, the simulation calculation of

high-resolution cloth takes several minutes per frame, which can not be executed in real-time. To pursue

higher real-time performance, Kim M [16] and others proposed cloth simulation with effective collision

detection for interactive AR applications in 2019. The Unity plug-in was used to design and implement a

similar cloth simulation method using efficient collision detection technology. However, no collision

elimination process slowed down the simulation efficiency. In 2020, Lyu M et al. [17] proposed a collision

solution method based on the penalty function, which quickly deals with cloth contact friction and

collision. It has improved the problem that some collisions will be ignored in a significant time step and

enhanced the robustness of the simulation. However, the time cost is too high due to its simulation

calculation based on the implicit Euler integral and Newton method. In 2021, Wang et al. [18] realized the

submillimeter cloth fold simulation based on GPU. The simulation effect of this method is more refined,

but it also increases the consumption of performance and time.

In this paper, a fast and efficient collision processing method is proposed and applied to cloth

simulation. A set of BVH structure colliders are automatically generated for 3D objects by algorithm, and

the BVH tree is generated by the method based on Morton code. For non-leaf nodes, the AABB bounding

box is used to quickly eliminate the areas without collision and improve the elimination efficiency; The

leaf node adopts a sphere bounding box to realize effective collision processing between 3D object and

cloth model. It is developed as a Unity plug-in, which is widely used in real-time game development. The

performance improvement of this method is given by comparing it with the existing cloth components and

literature [16].

II. MATERIALS AND METHODS

The algorithm structure is divided into four modules: preprocessing module, time integration module,

parallel processing module, and collision processing module. The preprocessing module preprocesses the

rigid body when adding a rigid body to the scene, reads the grid information of the rigid body, and

automatically generates a collider according to the grid information to simulate the shape of the object, to

simplify the process of collision detection and collision response; In each iteration, the time integration

module will time integrate the cloth particles and calculate the distance of the next time step according to

the force condition of the particles; The parallel processing module implements the collision processing

algorithm of spring particle model in parallel by calculating shaders to improve the parallelism; The

collision processing module includes that after the particle passes through the time integration, the position

and velocity change, and the model penetration may occur. Find the penetrating particle through collision

detection, carry out collision response, and update the position and velocity of the particle.

Forest Chemicals Review
www.forestchemicalsreview.com
ISSN: 1520-0191
May-June 2022 Page No. 631-647
Article History: Received: 24 February 2022, Revised: 05 April 2022, Accepted: 08 May 2022, Publication: 30 June 2022

634

Input network
Physical

modeling

Time integral

Parallelization

Collision elimination

Accurate collision

detection

Collision detection

Collision

response
Input network

Collision handling

collision

non-collision

Fig 1: Simulation flow chart

The simulation flow is shown in

Fig 1. Firstly, the force analysis of each particle is carried out according to the particle spring model,

and the current resultant force of each particle is calculated. Then, the particle's time integration is carried

out using the displayed fourth-order Runge-Kutta integral method. Then the position and velocity of the

particle are updated, and then the collision detection is carried out. If the particle collides with a rigid body,

the collision response is carried out, and the iterative process of this simulation ends.

2.1 Preprocessing

In this study, the ideal particle spring model is adopted, and the elastic deformation force of the spring

can be calculated by Hooke's law. Assuming that the set of adjacent particles of particle 𝑃0 is R, the

elastic deformation force of 𝑃0 is represented by formula (1).

𝑓𝑒𝑙𝑎𝑠𝑡 =∑𝑐𝑒(|𝑃0𝑃𝑖̅̅ ̅̅ ̅| − |𝑃𝑖𝑃0̅̅ ̅̅ ̅|0) ∙ 𝑁|𝑃𝑖𝑃0̅̅ ̅̅ ̅̅ |

𝑖∈𝑅

 (1)

Where 𝑐𝑒 represents the elastic deformation coefficient of the spring between two points, |𝑃0𝑃𝑖̅̅ ̅̅ ̅|

represents the distance between particle 𝑃0 and 𝑃𝑖 at time t, |𝑃𝑖𝑃0̅̅ ̅̅ ̅|0 represents the initially set distance

between particles 𝑃0 and 𝑃𝑖 at zero time, 𝑁|𝑃𝑖𝑃0̅̅ ̅̅ ̅̅ | represents the unit vector of 𝑃𝑖 pointing to 𝑃0. 𝑃0

and 𝑃𝑖 determine, which one of the structural spring, shear spring and bending spring is according to the

connection direction and the number of intermediate spacing particles, and then calculate the response

force.

The change of deformation force may cause the vibration of cloth particles. To prevent the excessive

vibration of particles and reduce the authenticity of simulation, the spring damping force 𝑓𝑑𝑎𝑚𝑝 is added,

which is a function of the speed of particles, as shown in equation (2).

Forest Chemicals Review
www.forestchemicalsreview.com
ISSN: 1520-0191
May-June 2022 Page No. 631-647
Article History: Received: 24 February 2022, Revised: 05 April 2022, Accepted: 08 May 2022, Publication: 30 June 2022

635

𝑓𝑑𝑎𝑚𝑝 = −𝐶𝑑
𝜕𝑋

𝜕𝑡
 (2)

𝑐𝑑 is the damping coefficient, and the damping force is positively correlated with the particle velocity,

which can effectively prevent the untrue stretching and deformation of cloth caused by too fast particle

vibration, to improve the fidelity of the simulation.

Based on the above contents, the mechanical equation can be established. In the model, the

acceleration, velocity, and displacement of the particle [i, j] with time are expressed as formula (3).

{

 𝑎⃗𝑖,𝑗(𝑡) =

1

𝑚
𝐹⃗𝑖,𝑗(𝑡)

𝑣⃗𝑖,𝑗(𝑡+∆𝑡) = 𝑣⃗𝑖,𝑗(𝑡) + 𝑎⃗𝑖,𝑗(𝑡+∆𝑡)∆𝑡

𝑝⃗𝑖,𝑗(𝑡+∆𝑡) = 𝑝⃗𝑖,𝑗(𝑡) + 𝑣⃗𝑖,𝑗(𝑡+∆𝑡)∆𝑡

 (3)

Where ∆𝑡 is the time step, 𝐹⃗𝑖,𝑗(𝑡) is the resultant force of the particle [i, j] at time t, 𝑎⃗𝑖,𝑗(𝑡) is the

acceleration of the particle [i, j] at time t, 𝑣⃗𝑖,𝑗(𝑡) is the velocity of the particle [i, j] at time t, and 𝑝⃗𝑖,𝑗(𝑡) is

the position of the particle [i, j] at time t.

2.2 Time Integral

In this paper, the Runge Kutta method is used to solve the time integral. Compared with the truncation

error of the Euler method 𝑜(ℎ2) and the truncation error of median method 𝑜(ℎ3), the Runge Kutta

method can obtain a higher truncation error. Its idea is to predict the slopes of multiple points in

(𝑥𝑛, 𝑥𝑛+1), so as to construct a more precise time integration formula. The fourth-order Runge Kutta

integral method predicts four slopes in each time step, and its truncation error is 𝑜(ℎ5).

𝑘1 = 𝑓(𝑥𝑛, 𝑦𝑛)

𝑘2 = 𝑓(𝑥𝑛 +
1

2
ℎ, 𝑦𝑛 +

1

2
ℎ𝑘1)

𝑘3 = 𝑓(𝑥𝑛 +
1

2
ℎ, 𝑦𝑛 +

1

2
ℎ𝑘2)

𝑘4 = 𝑓(𝑥𝑛 + ℎ, 𝑦𝑛 + ℎ𝑘3))

𝑦𝑛+1 = 𝑦𝑛 +
1

6
ℎ𝑘1 +

1

3
ℎ𝑘2 +

1

3
ℎ𝑘3 + ℎ𝑘4

(4)

It can be seen from formula (4) that the fourth-order Runge Kutta integral method needs more

Forest Chemicals Review
www.forestchemicalsreview.com
ISSN: 1520-0191
May-June 2022 Page No. 631-647
Article History: Received: 24 February 2022, Revised: 05 April 2022, Accepted: 08 May 2022, Publication: 30 June 2022

636

operations and occupies more memory space than the Euler method, but its advantage is that it can

improve the accuracy and stability of simulation, which is very suitable for simulation with large time step.

2.3 Parallelization

Compute shader is a shader that can be used in any shading stage. It provides parallelism for general

tasks. To improve the real-time performance, this paper uses compute shaders to implement the collision

processing algorithm of the spring particle model in parallel.

The user-defined calculation space controls the number of calls to the compute shader. The calculation

space can be defined as one-dimensional, two-dimensional, or three-dimensional space. The calculation

space is divided into several groups, and each group contains many calls to the compute shader. For each

different compute shader, different global space and local space can be defined. This paper uses three

compute shaders to speed up the simulation process. TABLE I shows the name, function, and global and

local space each computes shader uses.

TABLE I. Global space and local space used by each compute shader (n is the number of particles)

Shader name Function description Global space Local space

NodeUpdate
Calculate the current stress condition for each

node and perform time integration
(n/8,n/8,1) (8,8,1)

CollisionDection

WithBVH

Collision detection and collision response are

performed for each node
(n/8,n/8,1) (8,8,1)

normalShader
Calculate the normal vector of each face of the

cloth for subsequent rendering
(n/8,n/8,1) (8,8,1)

The compute shader does not have any direct user-defined inputs and outputs. The compute shader

obtains data directly from memory through the image access function or the use of shader storage buffer

objects (SSBO). A shader buffer object is a particular buffer object that can be written and read in a GLSL

shader. Their size is limited by the amount of GPU memory available and up to 16kb. This article created

multiple SSBO to facilitate access to information. TABLE II shows the SSBO defined for each shader.

TABLE II. SSBO used by each compute shader

Shader name SSBO name Stored information

NodeUpdate Position Local coordinate information of each particle

Velocity Velocity of each particle in local coordinate system

PositionTemp World coordinate information of each particle

prevPosition
World coordinate information of the previous step of

each particle

trsMatrix A matrix that converts local coordinates into world

Forest Chemicals Review
www.forestchemicalsreview.com
ISSN: 1520-0191
May-June 2022 Page No. 631-647
Article History: Received: 24 February 2022, Revised: 05 April 2022, Accepted: 08 May 2022, Publication: 30 June 2022

637

coordinates

VelocityTemp
The velocity of each particle in the world coordinate

system

CollisionDectionWithBVH PositionTemp World coordinate information of each particle

VelocityTemp Velocity of each particle

PrevPosition World coordinate information of the previous step of

each particle

Root BVH structure of rigid body model

NormalShader Position Local coordinate information of each particle

Normal Normal vector of each point

The pseudo-code for calculating the shader NodeUpdate is shown in algorithm 1. The number of

threads enabled by the shader is the same as the number of soft body particles. Each thread will obtain a

global ID and then use this ID to obtain the coordinates, speed, and other information of the processed

particles. It also has a matrix that can convert the local coordinate system of the model into the world

coordinate system. This shader updates the position and velocity of the particle in the local coordinate

system and the world coordinate system. In Algorithm 1, lines 4 and 5 calculate the resultant force

generated by the particle's adjacent spring, calculate the particle's acceleration in line 6, update the velocity

in lines 7 and 8, and calculate the new local coordinates with the fourth-order Runge Kutta integral.

Calculate the coordinates and velocity of the particle in the global coordinate system in lines 9 and 10.

Algorithm 1: NodeUpdate shader

Input: SSBO(Position,Velocity,trsMatrix),nodeMass

Output: SSBO(Position,PositionTemp,prevPosition,Velocity)

1:Begin

2: currentNode=SV_DispatchThreadID;

3: prevPosition= trsMatrix*Position[currentNode];

4: for each neighborNode

5: Calculate the resultant force between the particle and the adjacent node

6: float a =force/nodeMass;

7: Velocity[currentNode] = velocity[currentNode] + a * delta Tim

8: Updating the local coordinates of particles by fourth-order Runge Kutta integral

9: PositionTemp[currentNode] = trsMatrix * Position[currentNode];

10: VelocityTemp[currentNode]= trsMatrix* Velocity [currentNode];

11:End

The pseudo-code for calculating the shader CollisionDectionWithBVH is shown in Algorithm 2. The

enabled threads are the same as the shader NodeUpdate, and the number of soft body particles is the same.

Each thread first obtains its global ID, then obtains the particle information to be processed according to

this global ID, and then uses this particle to traverse the BVH of the model in a non-recursive depth-first

method. If the particle collides with the sphere Collider, the collision response is performed to update the

Forest Chemicals Review
www.forestchemicalsreview.com
ISSN: 1520-0191
May-June 2022 Page No. 631-647
Article History: Received: 24 February 2022, Revised: 05 April 2022, Accepted: 08 May 2022, Publication: 30 June 2022

638

position and velocity of the particle.

Algorithm 2: CollisionDectionWithBVH

Input: SSBO(PositionTemp,VelocityTemp,PrevPosition,Root)

Output: SSBO(PositionTemp,VelocityTemp)

1: Begin

2: currentNode=SV_DispatchThreadID;

3: Stack.Pust(root)

4: while(!Stack.empty())

5: targetNode=Stack.pop();

6: if(Overlap(targetNode))

7: if(targetNode==leafNode)

8: Accurate collision detection and collision response

9: Else

10: Stack.Pust(root->rightChild);

11: Stack.Pust(root->leftChild);

12:End

In calculating the pseudo-code of the shader NormalShader, as shown in Algorithm 3, the number of

enabled threads is the same as the number of prime points. Each thread first obtains its ID in the global,

reads the particle's coordinates, the overall number of rows and columns, and then uses the shader to

calculate the normal vectors of all faces connected by the particle, normalizing the vectors calculating the

normal of the particle.

Algorithm 3: NormalShader

Input: SSBO(Position), id, nodeRow, nodeCol

Output: SSBO(Normal)

1:Begin

2: if(id.y < nodeRow-1)

3: if(id.x<nodeCol-1)

4: Calculate the normal vector of the two faces associated with the lower right of the node

5: else

6: Calculate the normal phasor of the two faces associated with the lower left of the node

7: if(id.y > 0)

8: if(id.x<nodeCol-1)

9: Calculate the normal phasor of the two surfaces associated with the upper left of the node

10: else

11: Calculate the normal vectors of the two faces associated with the upper right of the node

12: Unitized vector

13: End

Forest Chemicals Review
www.forestchemicalsreview.com
ISSN: 1520-0191
May-June 2022 Page No. 631-647
Article History: Received: 24 February 2022, Revised: 05 April 2022, Accepted: 08 May 2022, Publication: 30 June 2022

639

2.4 Collision Handling

In soft body simulation, the collision types between objects can be divided into soft body rigid body

collision and soft body self-collision. This paper focuses on the collision between soft body and rigid body

and focuses on the collision processing algorithm between soft body and rigid body.

2.4.1 Pretreatment of rigid body model

Compared with the previous method of constructing bounding boxes for each model's triangular

surface to ensure the simulation process's authenticity, this paper proposes a method to simplify the model

by constructing a group of BVH structure colliders. Firstly, an AABB is constructed for the whole model,

and then the AABB is divided into multiple voxels according to the needs of the situation, and a sphere

collider is obtained for each voxel. The collider can surround all the vertices contained in the voxel. The

sphere collider is the leaf node in the BVH structure tree, which represents the actual collision part of the

rigid body model. AABB collider is a non-leaf node. The soft body points do not have to collide with each

face of the model for collision detection, which is used to eliminate the non-collision area quickly.

2.4.2 Selection of bounding boxes and parallel construction of BVH

A sphere bounding box is simple in structure, but its tightness is very poor. It is suitable for scenes with

a large amount of rotation. OBB is much more robust in compact than AABB and sphere, but the complex

construction methods will reduce the real-time performance. K-DOP is very important for the selection of

K value. It needs many tests to select the best K value, which is more troublesome. Although the tightness

of AABB is not as good as OBB, the construction method is simple, so this paper chooses to use AABB

and a sphere bounding box to construct BVH. This paper uses the top-down method based on Morton code

to construct the BVH tree. The top-down method means that in the collision process, the bounding box is

constructed for the whole target collision object as the root node, the target collision object is subdivided

into small geometry according to specific rules, and the bounding box is constructed for the geometry,

which can also be subdivided into smaller geometry. In this way, the structure subdivided in turn is similar

to the tree structure, and the leaf nodes constitute the minimum geometric unit of the target collision.

According to the above method, first, calculate their Morton code according to the center point of each

element. Then, the Morton code is used to sort the elements, and then the elements will be placed in a

spatially coherent manner. The BVH is constructed by recursively dividing the range of the current root

node. For the current root node covering the range [i, j], find the maximum difference between Morton

codes in the range [i, j], recorded as γ。 Then, the left child node of the current node overrides [i, γ]， Right

child node overlay[γ+ 1, j]. Perform this step recursively until the current node contains only one entity.

The BVH constructed in this paper is a complete binary tree structure; if there are N leaf nodes, there will be

N-1 non-leaf nodes. Each non-leaf node is processed in parallel[19], and the bounding box hierarchy is

divided according to the maximum difference of Morton code. This method only needs to allocate an array

Forest Chemicals Review
www.forestchemicalsreview.com
ISSN: 1520-0191
May-June 2022 Page No. 631-647
Article History: Received: 24 February 2022, Revised: 05 April 2022, Accepted: 08 May 2022, Publication: 30 June 2022

640

composed of N-1 non-leaf nodes and then process all non-leaf nodes in parallel. Each thread first needs to

determine the object range corresponding to its node and then continue to divide this range in the same way.

Finally, the sub-nodes are selected for nodes according to their respective sub-ranges. If there is only one

object in the child range, it must be a leaf node. Otherwise, another non-leaf node in the array is referenced.

This construction method is shown in

Fig 2. According to this method, the hierarchical bounding box of the model is generated.

0

0

0

0

1

0 1 2 3 4 5 6 7

0

0

0

1

0

0

0

1

0

0

0

0

1

0

1

1

0

0

1

1

1

1

0

0

0

1

1

0

0

1

1

1

1

1

0

0

0

0

0

1

0 1 2 3 4 5 6 7

0

0

0

1

0

0

0

1

0

0

0

0

1

0

1

1

0

0

1

1

1

1

0

0

0

1

1

0

0

1

1

1

1

1

0

0

0

0

0

1

0 1 2 3 4 5 6 7

0

0

0

1

0

0

0

1

0

0

0

0

1

0

1

1

0

0

1

1

1

1

0

0

0

1

1

0

0

1

1

1

1

1

0

0

0

0

0

1

0 1 2 3 4 5 6 7

0

0

0

1

0

0

0

1

0

0

0

0

1

0

1

1

0

0

1

1

1

1

0

0

0

1

1

0

0

1

1

1

1

1

0

0

0

0

0

1

0 1 2 3 4 5 6 7

0

0

0

1

0

0

0

1

0

0

0

0

1

0

1

1

0

0

1

1

1

1

0

0

0

1

1

0

0

1

1

1

1

1

0

Fig 2: Schematic diagram of division according to the maximum difference position between Morton codes

2.4.3 Traversal of hierarchical bounding box

Bounding box of root

node (intersect)

Mass

point

Bounding box of left

node (intersect)

Bounding box of right

node (intersect)

Bounding box of left

node (intersect)

Bounding box of left

node (non-intersect)

Bounding box of left

node (non-intersect)

Bounding box of left

node (non-intersect)

Sphere

Collider

(intersect)

Fig 3: Traversal process of particle and hierarchical bounding box tree

The particle traverses the BVH of the model in a non-recursive depth-first method. When the particle

traverses the BVH of the rigid body model, the particle performs an intersection test on all nodes of a layer

of BVH. If they do not intersect, the particle does not intersect with the model. The traversal process is

shown in

Forest Chemicals Review
www.forestchemicalsreview.com
ISSN: 1520-0191
May-June 2022 Page No. 631-647
Article History: Received: 24 February 2022, Revised: 05 April 2022, Accepted: 08 May 2022, Publication: 30 June 2022

641

Fig 3.

2.4.4 Collision response

In this study, if a collision is detected between the cloth particle and the sphere, that is, the distance between

the particle and the sphere's center is less than the radius of the sphere, the collision response needs to be

carried out. You need to adjust the position of the particle to the first point where the particle collides with

the sphere along the velocity direction, and correct the velocity of the particle to retain only the tangential

velocity with the sphere. As shown in

Fig 4, the position of the particle at 𝑡0 is 𝑃0 and the velocity is 𝑉0. After a step-by-step time

integration, the position at 𝑡1 is 𝑃1 and the velocity is 𝑉1. At this time, the distance between the

particle and the center of the sphere is less than the radius of the sphere, the particle collides with the

sphere, the point 𝑃′1 where the particle collides with the sphere is calculated, and the position of the

particle is modified to 𝑃′1, Then the velocity is changed to the tangential velocity of the original

velocity along the direction of the spherical shell. Thus, the collision response process is completed.

A

V1

P1, t=t1

V0

P`1, t=t1

V`1

P0, t=t0

Fig 4: Collision response of particles

III. CONCLUSION

3.1 Experimental Environment

Using the collision detection method proposed in this paper, the cloth model is implemented as a

Unity plug-in. The collision test is carried out on various three-dimensional objects. The experiment was

carried out in the computing environment shown in TABLE III. This paper uses more and more

complex models than the number of vertices and faces in literature [16], as shown in TABLE IV. The

performance is compared with the Unity cloth component and the method in the document [16].

TABLE III. Table of experimental environment parameters

Assembly Explain

Forest Chemicals Review
www.forestchemicalsreview.com
ISSN: 1520-0191
May-June 2022 Page No. 631-647
Article History: Received: 24 February 2022, Revised: 05 April 2022, Accepted: 08 May 2022, Publication: 30 June 2022

642

Operating system Windows 10 home Chinese

Unity Unity 2019 2.3 f1

CPU Intel Core i5 10400F

RAM 16GB

GPU NVIDIA GeForce GTX1650

VRAM 8GB

TABLE IV. Test models for collision test with the proposed cloth model

Model name Bunny Dragon

Number of vertices 35295 104872

Number of triangular faces 70580 209227

3.2 Parameter Initialization

Before the simulation process, the cloth parameters should be initialized. The description of the

parameters is shown in TABLE V below. After setting the cloth parameters, the simulation process can

be started.

TABLE V. Description of cloth parameters

Parameter name Explain

Vertex Column Number of particle rows

Vertex Row Number of particle columns

Cloth Size Length of cloth

Cloth Mass Fabric quality

Looper The number of simulation iterations performed in each frame

SpringK Elastic coefficient of spring

Damping Damping coefficient of fabric simulation

Externa Force Non gravity external force

3.3 Effect Demonstration

Firstly, show the simulation effect of the cloth with two ends fixed, set the coordinates of the two ends of the

Forest Chemicals Review
www.forestchemicalsreview.com
ISSN: 1520-0191
May-June 2022 Page No. 631-647
Article History: Received: 24 February 2022, Revised: 05 April 2022, Accepted: 08 May 2022, Publication: 30 June 2022

643

cloth, and then the cloth sags under the action of gravity. The simulation effect is shown in

Fig 5.

Fig 5: Cloth simulation diagram

TABLE VI. The results of BVH structure collider generation for the test models

Model name Bunny Dragon

1 * 1 * 1 grid

3 * 3 * 3 grid

5 * 5 * 5 grid

Forest Chemicals Review
www.forestchemicalsreview.com
ISSN: 1520-0191
May-June 2022 Page No. 631-647
Article History: Received: 24 February 2022, Revised: 05 April 2022, Accepted: 08 May 2022, Publication: 30 June 2022

644

TABLE VI shows the process of automatically generating sphere colliders and box colliders

according to the accuracy of models and voxels. The precision of voxels used in the experiment is set to

1 * 1 * 1, 3 * 3 * 3 and 5 * 5 * 5. The higher the precision of voxels, the tighter the collection of

colliders.

When there is only one bounding box, there is only one leaf node, so there is no AABB bounding

box, only one bounding sphere; In the 3 * 3 * 3 grid, there are 27 leaf nodes and 26 non-leaf nodes, that

is, there are 27 bounding spheres and 26 AABB bounding boxes. This paper compares three execution

times; The collision between the cloth component provided by the Unity game engine and a sphere

collider connected to each model. The method in document [16] and the method in the text generate a set

of collisions between BVH structure colliders and cloth objects. The cloth model used in each

experiment is a 64 * 64 grid structure compared in the scene with collision.

TABLE VII compares dynamic performance time between the method in this paper and Unity

components and literature [16]. The experimental results show that in the collision scene, the execution

time of each frame of the method proposed in this paper is shorter, which has higher simulation

efficiency than the Unity cloth component and the method in literature [16]. On the premise of obtaining

the same simulation effect as literature [16], the dynamic performance time is reduced by 40%. With the

improvement of accuracy, this method's maximum dynamic performance time is only increased by

0.004s. Error! Reference source not found. intuitively compares the simulation results of the cloth

component and the method in this paper. The 5 * 5 * 5 precision method proposed in this paper can

more realistically display the simulation effect of the object than Unity collision processing based on a

single Collider and cloth component.

TABLE VII. Comparison of simulation performance of test models used in different numbers and

structures of Colliders

Algorithm Network Structure 64 * 64 cloth model

Bunny Dragon

Unity cloth & one collider 1 * 1 * 1 0.211s 0.247s

Method of reference [16] 1 * 1 * 1 0.017s 0.020s

3 * 3 * 3 0.019s 0.020s

5 * 5 * 5 0.025s 0.025s

This paper 1 * 1 * 1 0.008s 0.013s

3 * 3 * 3 0.012s 0.013s

5 * 5 * 5 0.012s 0.015s

TABLE VIII. Cloth simulation results of the test model

Algorithm network structure 64 * 64 cloth model

Forest Chemicals Review
www.forestchemicalsreview.com
ISSN: 1520-0191
May-June 2022 Page No. 631-647
Article History: Received: 24 February 2022, Revised: 05 April 2022, Accepted: 08 May 2022, Publication: 30 June 2022

645

Bunny Dragon

Unity cloth &

one collider

1 * 1 * 1

This paper

1 * 1 * 1

3 * 3 * 3

5 * 5 * 5

IV. CONCLUSIONS

This paper designs and implements a novel cloth simulation method based on similar BVH collision

detection technology. In the proposed method, a set of BVH structure colliders are generated for the 3D

objects colliding with the cloth model. The collision processing is performed in parallel between each

particle and each collider of the cloth model. BVH structure is used to accelerate the collision detection

process. The tree structure of BVH can significantly accelerate the collision detection process between

particles and rigid bodies and improve collision detection and elimination efficiency. At the same time, the

parallel execution process also makes full use of the computing power of GPU. To prove the performance

of the proposed method, this paper compares the performance with the cloth component provided by Unity

Forest Chemicals Review
www.forestchemicalsreview.com
ISSN: 1520-0191
May-June 2022 Page No. 631-647
Article History: Received: 24 February 2022, Revised: 05 April 2022, Accepted: 08 May 2022, Publication: 30 June 2022

646

and other cloth simulation methods. The experimental results show that this method reduces the

cumbersome human tasks and can more accurately deal with the collision between 3D objects and cloth in

real-time. Improve the execution efficiency and realize real-time collision under the condition of ensuring

high-quality collision. In the experimental test, two different test models are used to test the collision of the

cloth model. For the 64 * 64 grid, under the condition of higher accuracy, the dynamic performance time is

still better than the method in literature and the structure of cloth components with a single collider. At

present, only the collision between soft body and rigid body is considered, and it is difficult to deal with

friction, penetration, etc. In the future, it is considered to combine the latest collision processing algorithm

to improve the realism further, improve the collision response process and the self-collision processing

process of cloth, realize the self-collision detection algorithm of cloth, and apply it to the virtual fitting

scene combined with MR, to provide users with more immersive cloth simulation effect and more realistic

visual feedback.

REFERENCES

[1] Meister D, Ogaki S, Benthin C, et al. A Survey on Bounding Volume Hierarchies for Ray Tracing//Computer

Graphics Forum. 2021, 40(2): 683-712.

[2] Wodniok D, Goesele M. Recursive SAH-based Bounding Volume Hierarchy Construction//Graphics Interface.

2016: 101-107.

[3] Yang F. AABB bounding box collision detection algorithm based on B + tree storage. Computer science, 2021,48

(S1): 331-333 + 348

[4] Qu H. Research on fast collision detection technology in complex virtual environment. Jilin University, 2020

[5] Lauterbach C, Garland M, Sengupta S, et al. Fast BVH construction on GPUs//Computer Graphics Forum. Oxford,

UK: Blackwell Publishing Ltd, 2009, 28(2): 375-384.

[6] Pantaleoni J, Luebke D. HLBVH: hierarchical LBVH construction for real-time ray tracing of dynamic

geometry//Proceedings of the Conference on High Performance Graphics. 2010: 87-95.

[7] Hu Y, Wang W, Li D, et al. Parallel BVH construction using locally density clustering. IEEE Access, 2019, 7:

105827-105839.

[8] Meister D, Bittner J. Parallel reinsertion for bounding volume hierarchy optimization//Computer Graphics Forum.

2018, 37(2): 463-473.

[9] Tang M, Tong R, Narain R, et al. A GPU‐based streaming algorithm for high‐resolution cloth

simulation//Computer Graphics Forum. 2013, 32(7): 21-30.

[10] Tang M, Wang H, Tang L, et al. CAMA: Contact‐aware matrix assembly with unified collision handling for GPU‐

based cloth simulation//Computer Graphics Forum. 2016, 35(2): 511-521.

[11] Chen J, Zheng Y, Song Y, et al. Cloth compression using local cylindrical coordinates. The Visual Computer, 2017,

33(6): 801-810.

[12] Cirio G, Lopez-Moreno J, Otaduy M A. Yarn-level cloth simulation with sliding persistent contacts. IEEE

transactions on visualization and computer graphics, 2016, 23(2): 1152-1162.

[13] Tang M, Wang T, Liu Z, et al. I-Cloth: Incremental collision handling for GPU-based interactive cloth simulation.

ACM Transactions on Graphics (TOG), 2018, 37(6): 1-10.

[14] Tang M, Liu Z, Tong R, et al. PSCC: Parallel self-collision culling with spatial hashing on GPUs. Proceedings of

the ACM on Computer Graphics and Interactive Techniques, 2018, 1(1): 1-18.

[15] Li C, Tang M, Tong R, et al. P-cloth: interactive complex cloth simulation on multi-GPU systems using dynamic

matrix assembly and pipelined implicit integrators. ACM Transactions on Graphics (TOG), 2020, 39(6): 1-15.

Forest Chemicals Review
www.forestchemicalsreview.com
ISSN: 1520-0191
May-June 2022 Page No. 631-647
Article History: Received: 24 February 2022, Revised: 05 April 2022, Accepted: 08 May 2022, Publication: 30 June 2022

647

[16] Kim M, Sung N J, Kim S J, et al. Parallel cloth simulation with effective collision detection for interactive AR

application. Multimedia Tools and Applications, 2019, 78(4): 4851-4868.

[17] Lyu M, Wan Y, Zhao W, et al. Fast Cloth Collision Detection and Effective Contact Friction Algorithm. Journal of

Computer-Aided Design & Computer Graphics, 32(3): 392-400.

[18] Wang H. GPU-based simulation of cloth wrinkles at submillimeter levels. ACM Transactions on Graphics (TOG),

2021, 40(4): 1-14.

[19] Karras T. Maximizing parallelism in the construction of BVHs, octrees, and k-d trees//Proceedings of the Fourth

ACM SIGGRAPH/Eurographics conference on High-Performance Graphics. 2012: 33-37.

