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Abstract: 

In order to achieve the sustainable development goals, the Chinese government has elevated the 

development of green energy to the level of a national strategy and has encouraged multiple financial 

channels to support green energy development. The capital market, especially the stock market, has 

become the most important factor in promoting the development of the green energy industry. This paper 

focuses on the analysis of systemic risk in the green energy capital market by selecting 2725 sets of stock 

market data from China's Green Energy Industry and its sub-industries from 2010 to 2021. The systemic 

risk level of China's Green Energy Industry and its major sub-industries is investigated by calculating 

VaR using the FIGARCH model. On this basis, the risk correlation and dynamic evolution of the green 

energy industry and its sub-industries are investigated by further constructing a multivariate 

DCC-GARCH model. The study found that (1) the photovoltaic industry has the highest risk level but is 

followed closely by the wind power and nuclear power industries. It is no longer the most important 

source of risk for China's Green Energy Industry; (2) the wind power and nuclear power industries have 

the same level of risk and have replaced the photovoltaic industry as the most important source of risk for 

China's Green Energy Industry; (3) the hydropower industry has the lowest level of risk and is an 

important guarantee for the healthy development of China's Green Energy Industry. Finally, based on the 

results of this empirical study, this paper puts forward some countermeasures and suggestions for the 

development of green energy. 

Keywords: China's Green Energy Industry, Capital markets, Systemic risk, Structural evolution. 

 

I. INTRODUCTION 

 

The world's energy structure is undergoing profound changes, and green energy has become an 

inevitable choice for countries to achieve sustainable development. China, as one of the world's largest 

energy consumers, has ample incentive to help its green energy industry prosper, both for the long-term 

consideration of ensuring its own energy security and for fulfilling its responsibility in energy conservation 

and emission reduction in line with its “Community of Human Destiny” initiative. To this end, the Chinese 

government has developed an ambitious green energy development plan. A series of encouragement and 

support policies have led China to become a major player in the world green energy market. 
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What is particularly noteworthy about China's development experience is that, after the initial policy 

support phase, direct financing has gradually become the most important source of funding for green 

energy-related enterprises to achieve their own development and technological upgrades through its 

growing and maturing capital market [1]. In particular, the stock market has played the most crucial role 

and is the main reason for the explosive growth in China's Green Energy Industry in recent years [2]. At 

the same time, the riskiness associated with the full involvement of capital markets has received increasing 

attention from researchers. Especially after the major setback of the photovoltaic industry in 2011, better 

capturing and predicting the risk level and development trend of the green energy market at the macro 

level has become a focus of attention [3,4]. This has important theoretical and practical implications for 

preventing possible systemic crises in this field and thus ensuring its healthy development. However, 

existing studies have not fully explored the level and structure of macro risks in green energy capital 

markets and their changing trends. 

 

China has recently proposed the long-term goal of “peak carbon dioxide emissions” and “carbon 

neutrality”, in which The Energy Greening Strategy will play a more important role. Its green energy 

industry will still face great developmental pressures and capital demand in the future, and the positive 

support of market-based capital sources is indispensable. While the capital market continues to play an 

important role in the resource allocation system of the green energy industry, it should be noted that the 

uncertainties in the development process of this industry in China have not been effectively curbed for a 

long time. First, compared with developed countries, China's Green Energy Industry started late, and faced 

with the pressure to maintain economic growth and to improve people's livelihood, its green energy 

industry was able to develop rapidly in a short period of time largely due to the strong support of financial 

subsidy policies. However, as the scale of the green energy industry continues to expand, the marginal 

effect of supportive policies in promoting the industry's development gradually diminishes, while the 

irrational investment impulses they lead to and the bad consequences they caused are becoming 

increasingly evident [5-7]. In addition, although the stock market has contributed to the development of 

China's Green Energy Industry quickly and conveniently to some extent, the conditions predicted by the 

efficient market hypothesis for rational arbitrageurs to force irrational noise out of the market are difficult 

to meet given the reality of high volatility and speculation due to the high proportion of individual 

investors in the Chinese stock market [8, 9]. Specifically, market shocks triggered by large capital 

movements in and out of the market in the short term occur from time to time, making the uncontrollable 

risk of green energy capital markets significantly increase. As the future development trend is continuously 

bullish, it stimulates speculative capital to enter this industry, which may further lead to the instability of 

the energy sector itself and even crisis in the long-term healthy development of the whole Chinese capital 

market. 

 

Based on the above reasons, this study intends to examine the systemic risk of China's green energy 

capital market from the macro level, starting from the most active and critical stock market. By examining 

the overall risk and spillover risk of China's Green Energy Industry and its sub-industries and the dynamic 

trends, this study reveals the risk level, structural characteristics, and general development pattern of 

China's Green Energy Industry in order to offer targeted risk prevention and governance recommendations, 
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to help achieve the goal of risk prevention and control, to smooth development, and to provide a reference 

for effectively promoting the healthy development of the world green energy market. 

 

This paper measures the systemic risk of China's green energy capital market using finance and 

econometric methods and analyzes its dynamic correlation with the four main green energy sub-sectors in 

terms of risk and its trend over time. The specific approach is as follows: first, the systemic risk of China's 

green energy market and its four submarkets were measured in general by calculating the VaR 

(Value-at-Risk) using the GARCH family model. Then, we compared and analyzed the systemic risk of 

China's green energy market in a Long Position and a Short Position to obtain a general impression of the 

systemic risk of China's Green Energy Market. After that, a multivariate DCC-GARCH model was 

constructed using the estimation results of the univariate GARCH model of each industry stock index to 

analyze the risk correlation and evolution trend of the green energy market and each sub-industry and to 

focus on the key nodes in it. Finally, relevant countermeasures and suggestions were proposed based on 

the above analysis findings. 

 

The remainder of the paper is organized as follows: Section 2 provides a review of the literature review 

on green energy risks and the dependences. Section 3 provides the methodology we used to study the 

systemic risk and structural evolution of China’s Green Energy Industry. Section 4 focuses on the data 

selection and empirical results. Section 5 is the conclusion, and provides some implications. 

 

II. LITERATURE REVIEW 

 

There is not much literature on the risk of the green energy industry using capital markets as an entry 

point. Most of the studies have been conducted at the corporate level, focusing on the investment and 

financing risks of emerging energy projects. To a certain extent, the findings of such studies can provide us 

with a deeper understanding of the mechanisms that generate macro risks in the green energy industry. 

Generally speaking, energy projects are typically capital-intensive. This is especially true for photovoltaic 

and wind power projects, which are major members of green energy compared with traditional energy 

projects. Their characteristics of being large upfront investments, having a long payback period, and 

having high uncertainty are more obvious, and the investment risk assessment and prevention of such 

projects have been emphasized by many researchers [10-12]. Different scholars have analyzed the 

operational and management risks faced during the rapid development of these industries from the 

microscopic perspectives of low-level duplication, relative overcapacity, project investment risk 

evaluation, and corporate credit risk [2,13-15]. The industrial policy is the most concerning factor in this 

kind of research. Since photovoltaic and wind power do not have price advantages in the initial stages, they 

rely on industrial policy support. The resulting market distortions and resource mismatches become more 

apparent in the later stages. This, coupled with the mediating and regulating effects of innovation 

disincentives and information asymmetries, poses potential risks to the operations of a large number of 

such enterprises [16,17]. According to a representative study by Tietjen and Pahle et al. (2016), which 

earlier revealed the impact of increased renewable energy investment on overall energy market risk, this 

study points out that the continued increase in the share of renewable energy sources is becoming more and 
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more evident in its impact on the stability of the overall energy market. In the absence of rapid 

substitution, the increased uncertainty in the energy sector as a whole will, in turn, backfire on the 

renewable energy market, leading to a reversal of its returns, although its own investment risk has 

diminished as the cost of generating electricity has decreased [18]. Based on the findings of the above 

studies, it is reasonable to infer that the accumulation and superposition of micro risks in the new green 

energy industry, represented by photovoltaic and wind power, may lead to a more complex and general 

risk dilemma for the green energy industry and the energy sector as a whole, thus increasing the 

uncertainty of its long-term development. This situation also requires a higher level of response than 

traditional energy risk management. 

 

Under the development trend of diversification of energy types and complexity of energy structures, 

many researchers advocate that considering the investment risks and development strategies of various 

types of clean or green energy in isolation is not sufficient to build a future-oriented energy system and 

may even lead to unpredictable safety problems. Without changing the basic concept of greening, a holistic 

perspective on the safe development of energy systems is the best choice [19-21]. Taking this as a starting 

point, numerous papers from the literature have focused on the issue of external risk spillovers in green 

energy markets. Such studies have rarely focused on topics related to new energy, renewable energy, and 

clean energy, etc. 

 

Among such studies, the one that has received the most attention is the issue of risk spillovers between 

new and traditional energy markets. For example, Reboredo (2015) analyzed the systematic risk and 

dependence between oil and renewable energy markets using the Copula model and found a significant 

time-varying average and symmetric tail dependence between international oil price volatility and major 

global renewable energy indices, with international oil price volatility contributing about 30% to the risk of 

renewable energy companies [22]. Xia and Ji et al. (2019) further included all major fossil energy sources 

in the study model. Their study examined the issue of fossil energy and renewable energy market 

dependence more comprehensively and found that the oil and coal generation markets are the main 

contributors to the volatility of renewable energy returns and have strong time-varying characteristics with 

large volatility over time [23]. A study by Reboredo and Ugolini (2018) for the U.S. energy market comes 

to a similar conclusion. Using a multivariate Vine--Copula to assess the impact of price changes in oil, 

natural gas, coal, and electricity on clean energy market volatility, they found that oil and electricity prices 

are the main contributors to the volatility of U.S. clean energy stock returns [24]. Based on this, Yao and 

Mo et al. (2021) examined the tail correlation between the clean energy market and the crude oil market in 

more depth using asymmetric multiple fractal detrended cross-correlation analysis (A-MFDCCA) using 

Chinese market data as a sample [25]. Their study revealed that the overall upward and downward trends 

of the clean energy market have significant multifractal characteristics and that the efficiency of the clean 

energy market is negatively affected regardless of the magnitude of the volatility. In addition, the studies 

by Ahmad (2017),Tiwari and Nasreen et al. (2021) and Jiang and Wang et al. (2021) all provided us with a 

clearer understanding of the relationship between renewable/clean energy market volatility and 

conventional energy markets [26-28]. 
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As more and more countries try to use financial instruments as an important option to regulate their 

energy mix in response to the climate crisis, the relationship between the risk of clean/green energy market 

and green bonds (GBs), European Emission Allowance (EUA) prices, other commodity markets, and 

subjective characteristics of market participants is beginning to receive attention.  

 

Liu and Liu et al. (2021) examined the risk spillover between the clean energy market and the green 

bond market using the conditional value-at-risk (CoVaR) and ΔCoVaR approaches. They found a positive 

time-varying average and tail dependence between the two, and the risk spillover shows asymmetric 

characteristics [29]. Hanif and Arreola Hernandez et al. (2021) investigated the frequency between 

European Emission Allowance (EUA) prices and renewable energy indices, using the European market as 

an example of volatility spillover, connectivity, and nonlinear dependence [30]. The results of the study 

showed that the short-term volatility spillover effect between carbon credit price and renewable energy 

index dominates the long-term volatility spillover effect. The volatility spillover between carbon credit 

prices and renewable energy indices is significant in both the short and long terms. Meanwhile, Yahya and 

Ghosh et al. (2020) further extended their research perspective to volatility spillovers and causality 

between nonferrous metal markets and clean energy markets, using a time-varying Copula model to reveal 

that the conditional dependence between the two is time-varying and asymmetric, with potential tail 

dependence [31]. Song and Ji et al. (2019) introduced investor sentiment variables into the study of 

renewable energy risk. They found that investor sentiment can explain the returns of renewable energy 

stocks and their volatility to some extent [32]. In addition, a study on private capital entry and investment 

risk in China's wind power industry and another study on the hierarchical relationship between risk factors 

in renewable energy generation provided a fuller understanding of the risk profile of some green energy 

markets and their correlation characteristics with other markets [33,34]. 

 

In summary, the existing literature findings can help us form a general impression of the sources of 

risks and their spillover effects in green energy markets, especially in terms of progressively deeper 

characterization of their external risk correlations. However, against the background of the increasing scale 

and proportion of the green energy industry, the overall risk level and internal risk structure of the green 

energy industry and their relative trends have gradually become important elements in judging the 

long-term development of the industry due to the significant differences in the starting point and 

development history of the various green energy industries. The existing literature is still inadequate in this 

regard and needs to be supplemented: 

 

First, among the components of the green energy industry designed to address the climate crisis, apart 

from photovoltaic and wind power, hydropower and nuclear power are the most noteworthy in terms of 

investment scale and application prospects. Both are important options to deal with the uncertainty of 

photovoltaic and wind power and cannot be ignored [35]. The relative changes in the development of the 

four major sub-sectors will inevitably have an important impact on the overall risk of the green energy 

industry, which is important for analyzing the overall risk structure of the green energy industry. However, 

there is a gap in systematic studies covering the risk profiles of the above four industries. Second, studies 

on the risk spillover effects of the green energy industry have mostly focused on the external risk spillover 
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situation. Still, little has been changed for the internal risk structure and change trends of the industry. 

However, whether the risk correlation between the green energy industry and its sub-sectors can be 

accurately described and grasped is crucial for managers to formulate and adjust guiding policies in a 

timely manner. Finally, China already ranks first in the world in terms of electricity generation and has the 

world's largest green energy market. At present, China is still developing at a relatively fast pace. The 

development of its green energy industry plays an important role in both its energy supply and the world 

energy market. However, there is a lack of research that takes a systematic and developmental view of the 

risk profile of China's Green Energy Industry. This study takes China's Green Energy Industry as a sample 

and conducts research on its risk level and organization and on its changing trend. The results will help to 

complement the abovementioned shortcomings in this research area. 

 

III. METHODOLOGY 

 

3.1 Systemic Risk Estimation Methods 

 

Volatility is one of the most important indicators for evaluating financial market risk. As the 

mainstream model for financial market risk measurement, the Value-at-Risk (VaR) measurement 

technique has become the international standard for financial risk management and is now widely adopted. 

VaR refers to the maximum possible loss of a financial asset or portfolio in a given period of time in the 

future at a given confidence level within a certain holding period. Its mathematical expression is as 

follows: 

 

Prob(ΔP<-VaR)= 1- 𝛼                          (1) 

 

Where Prob denotes the probability and α is the confidence level. This method was proposed by JP 

Morgan in the 1990s and has become the mainstream method used in the field of risk management. 

 

 FIGARCH model 

 

With continuous research, a large number of empirical analyses found that the return series of financial 

markets have the characteristics of “leptokurtosis and fat-tail” distribution. To characterize this volatility 

clustering phenomenon, Engle (1982) proposed the ARCH model [36]. On this basis, Bollerslev (1986) 

proposed the GARCH model [37]. Subsequently, the GARCH family model formed by continuous 

expansion gradually became the main method for calculating VaRs and was widely adopted. 

 

The FIGARCH (p, d, q) model applied in this study was proposed by Baillie and Bollerslev et al. 

(1996) [38] based on the IGARCH model [39]. It replaces the first-order difference term (1 − 𝐿) in the 

IGARCH model with the fractional difference term (1 − 𝐿)𝑑 for 0 < d < 1. For the IGARCH model, the 

effect of the perturbation term on the conditional variance can persist indefinitely. For the FIGARCH 

model, the effect of the perturbation term on the conditional variance decays in a slow hyperbolic form, so 

it is possible to portray the phenomenon that the time series satisfies long memory. Its mathematical 

expression is as follows:  
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𝜑𝐿(1 − 𝐿)𝑑𝜀𝑡
2 = 𝜔 + (1 − 𝛽(𝐿))𝑉𝑡,   𝑉𝑡 = 𝜀2 − 𝜎2              (2) 

 

In the above equation, when d = 0, it is the GARCH model. When d = 1, it is the IGARCH model. The 

conditional variance of FIGARCH (p, d, q) can be written as follows: 

 

𝜎𝑃𝑡
2 = 𝜔0(1 − 𝛾(𝐿))−1 + [1 − (1 − 𝛾(𝐿))−1𝛼(𝐿)(1 − 𝐿)𝑑]𝑢𝑝𝑡

2           (3) 

 

The above equation(1 − 𝐿)𝑑 can be expanded using Maclaurin's series: 

 

(1 − 𝐿)𝑑 = ∑ (−1)𝑗 (𝑑
𝑗
) 𝐿𝑗 =∞

𝑗=0 ∑
Γ(𝑗−𝑑)𝐿𝑗

Γ(−d)Γ(j+1)
,    Γ(𝑔) = ∫ 𝑥𝑔−1𝑒−𝑥𝑑𝑥

∞

0
∞
𝑗=0      (4) 

 

WhereΓ(. ) is the gamma function and the parameter d (0 < d < 1) is an indicator to determine the long 

memory of financial time series. Numerous empirical studies have found that the low-order FIGARCH (1, 

d, 1) model can then fit the high-frequency financial time series data better [40-42]. 

 

In order to evaluate the losses caused by long position and short position trading positions, the 

skewed-Student distribution is introduced into the model considering the restricted short position trading in 

China, and the VaR of the alpha quantile of long position and short position trading positions can be 

written as follows:  

 

𝑉𝑎𝑅𝑃𝑡,𝛼
𝑙𝑜𝑛𝑔

= 𝑅̂𝑃𝑡 + 𝑆𝑡𝛼,𝑣𝜎̂𝑃𝑡                           (5) 

 

And 

 

𝑉𝑎𝑅𝑃𝑡,1−𝛼
𝑠ℎ𝑜𝑟𝑡 = 𝑅̂𝑃𝑡 + 𝑆𝑡1−𝛼,𝑣𝜎̂𝑃𝑡                         (6) 

 

Where 𝑅̂𝑃𝑡  and 𝜎̂𝑃𝑡  are the estimated conditional returns and conditional standard deviations, 

respectively. v is the degree of freedom of the model estimates. 𝑆𝑡𝛼,𝑣 is the quantile at of the left tail of 

the skewed student distribution, and 𝑆𝑡1−𝛼,𝑣 is the quantile at α% of the right tail. 

 

After calculating the VaRs, they were tested with the failure frequency test proposed by Kupiec (1995) 

and the dynamic quantile test (DQ) of Engle and Manganelli (2004) [43,44] respectively, to ensure the 

accuracy of the conclusions. 

 

3.2 Risk Structure and Evolution Estimation Methods 

 

The risk structure within China's Green Energy Industry and its dynamic evolution process are 

estimated using a DCC-GARCH model (dynamic conditionally correlated multivariate generalized 

autoregressive conditional heteroskedasticity model). This model was proposed by Engle (2002) [45] on 
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the basis of the CCC-GARCH model, which addresses the obvious disadvantage of the CCC-GARCH 

model in portraying the time-varying characteristics of time series data correlations by adding a variable 

conditional coefficient that can better fit the correlations of different time series over time. The 

DCC-GARCH model is widely used in the study of dynamic correlation of high-frequency time series 

because of its advantages of adapting to multivariate correlation matrices, fewer parameters to be 

estimated, and clear economic significance. 

 

The DCC-GARCH model can be written as follows: 

 

Suppose that 𝑟𝑡 = (𝑟1,𝑡, 𝑟2,𝑡, ⋯ 𝑟𝑘,𝑡) is a sequence of conditional returns on 𝑘 different financial assets 

or portfolios obeying a multivariate normal distribution with mean 0 and covariance matrix 𝐻𝑡 , 

i.e.,𝑟𝑡|𝛺𝑡−1~𝑁(0, 𝐻𝑡), where 𝛺𝑡−1 is the information set of return 𝑟𝑡 at the moment 𝑡 − 1. Then, 

𝐻𝑡 = 𝐷𝑡𝑅𝑡𝐷𝑡                            (7) 

 

𝑅𝑡 is the dynamic conditional correlation coefficient matrix, and 𝐷𝑡 is the principal diagonal matrix 

with the conditional standard deviation as the diagonal element, that is,  

 

𝐷𝑡 = 𝑑𝑖𝑎𝑔(ℎ11𝑡
1/2

⋯ ℎ𝑁𝑁𝑡
1/2

)                      (8) 

 

hiit can be obtained from a suitable univariate GARCH family model, and 

 

𝑅𝑡 = 𝑑𝑖𝑎𝑔(𝑞11,𝑡

−
1

2 ⋯ 𝑞𝑁𝑁,𝑡

−
1

2 )𝑄𝑡𝑑𝑖𝑎𝑔(𝑞11,𝑡

−
1

2 ⋯ 𝑞𝑁𝑁,𝑡

−
1

2 )              (9) 

 

Qt = (qij,t) satisfies the symmetric positive definite matrix of N × N , and can be written as follows: 

 

𝑄𝑡 = (1 − 𝛼 − 𝛽)𝑄̅ + 𝛼𝑢𝑡−1𝑢𝑡−1
′ + 𝛽𝑄𝑡−1                (10) 

 

Where 𝑢𝑖𝑡  =  𝜺𝑖𝑡 ∕ √ℎ𝑖𝑖𝑡 , 𝑢𝑡 is the standardized residual, 𝑄 ̅ is the unconditional variance matrix of 

the standardized residual series 𝑢𝑡  of the exponential return regression equation, and α and β are 

non-negative scalar parameters and satisfy α + β < 1. 

 

After transformation, the dynamic correlation coefficient 𝜌12𝑡 between the variables can be written as 

follows: 

 

𝜌12𝑡 =
(1−𝛼−𝛽)𝑞̅12+𝛼𝑢1,𝑡−1𝑢2,𝑡−1+𝛽𝑞12,𝑡−1

√((1−𝛼−𝛽)𝑞̅11+𝛼𝑢1,𝑡−1
2 +𝛽𝑞11,𝑡−1)((1−𝛼−𝛽)𝑞̅22+𝛼𝑢2,𝑡−1

2 +𝛽𝑞22,𝑡−1)
         (11) 

 

In this study, a FIGARCH model is constructed for each stock index return series considering the long 

memory of energy market volatility in general. And based on this, a DCC-GARCH model is further 

constructed to examine the dynamic correlations among the variables under the condition of long memory 

of volatility. Thus, the estimation results can more accurately reflect the correlation characteristics among 
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variables to fully portray the internal structure and evolution trend of capital market risk in China's Green 

Energy Industry. 

 

IV. DATA AND EMPIRICAL RESULTS 

 

4.1 Data  

 

The financial data involved in this article all comes from the WIND database. We selected The New 

Energy Generation Index 1 (Code: WI. 882601, abbreviated: GEN), Wind Power Index (Code: WI 

.884036, abbreviated: WIN), Photovoltaic Index (Code: WI .884045, abbreviated: SOL), Nuclear Power 

Index (Code: WI. 884046, abbreviated: NUC), and Hydro Power Index (Code: SI .851612, abbreviated: 

HYD) from January 4, 2010, to March 23, 2021, for a total of 2,725 trading days for analysis, covering the 

decade of fastest development of Green energy in China. 

 

The daily return of each index is obtained by making a first-order logarithmic difference between the 

closing prices: 

 

𝑅𝑡 = log (
𝑃𝑡

𝑃𝑡−1
)                            (12) 

 

Where 𝑅𝑡 is the return of a stock index on day 𝑡 and 𝑃𝑡 is the closing price of a stock index on day 

𝑡. 

 

After obtaining the returns of five industry indices by the above method, descriptive statistics are first 

performed, the ARCH effect is tested, and VaR is calculated for each of the five indices in the case of a 

significant ARCH effect. 

 

Fig1-5 show the volatility of the daily returns of the five industry indices and their distributions, 

respectively. It can be observed more directly that both the green energy industry as a whole and its major 

sub-industries have smaller return volatility in some periods and larger return volatility in others, showing 

obvious characteristics of fluctuation aggregation. This feature was especially evident during the upward 

cycle of the market. The daily returns of photovoltaic stock index even saw extreme values of over 10% 

volatility. Further combined with the basic statistical indicators and the results of the Excess Kurtosis test 

in Table I, obvious characteristics of “leptokurtosis and fat-tail” distribution are shown, and the 

preliminary judgment is that the GARCH family model is applicable to estimate VaRs.  

 

                                                             
1
 “The New Energy Power Generation Index” is an industry profile of power providers that use, but are not limited to, bioenergy, geothermal, 

solar, hydro, and wind energy to generate electricity. It covers the four most widely used green energy sources in China, including wind, solar, 

nuclear, and hydro energy, and is very representative of the green energy power generation industry. 
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Fig 1: Daily returns of GEN and the distribution 

  

 

Fig 2: Daily returns of WIN and the distribution 

 

  
 

Fig 3: Daily returns of SOL and the distribution 

 

  

 

Fig 4: Daily returns of NUC and the distribution 
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Fig 5: Daily returns of HYD and the distribution 

 

Table I shows the basic statistics and the results of misspecification tests for the daily return series of 

five industry indices. It can be observed that the volatility of the series for the four major green energy 

sub-industries is the largest for the photovoltaic industry and the smallest for the hydropower industry, and 

the overall volatility of the green energy industry is in the middle during the sample examination period. 

Surprisingly, the nuclear power industry has seen more volatility than wind power, given China's cautious 

approach to nuclear investment; the industry was the last to open up to social capital and the absolute 

dominance of state-owned holding companies in it. Combined with the expected returns, the photovoltaic 

industry is also the best, the wind industry is the second best, the hydropower industry and the nuclear 

industry are worse, and the overall expected return of the green energy industry is even higher than that of 

the wind industry. The nuclear industry, with the highest volatility, has the worst expected returns. Overall, 

the high volatility and high expected returns of photovoltaic and wind power industries and the low 

volatility and low expected returns of the hydropower industry are in line with expectations from the basic 

statistics. The high volatility and low expected returns of the nuclear power industry deviate from 

expectations, and it is possible that China's energy demand and the government's enthusiasm for nuclear 

power development are sending clearer signals to investors to enter the market. 

 

TABLE I. Basic statistics of returns and misspecification tests 

 

 GEN WIN SOL NUC HYD 

Basic 
statistics 

min -0.0435 -0.0450 -0.0445 -0.0455 -0.0308 
mean 0.0001 0.0001 0.0002 0.000 0.000 
max 0.0418 0.0352 0.1115 0.0350 0.0272 

St. Dev 0.0080 0.0081 0.0088 0.0083 0.0056 

Distribution 

Skewness -0.5604(0.000) -0.8298(0.000) 0.0218(0.643) -0.8072(0.000) -0.6035(0.000) 

Kurtosis 
4.9297 
(0.000) 

3.6892 
(0.000) 

11.7410(0.000) 4.1494(0.000) 4.1793(0.000) 

Jarque-Bera 
2901.9 
(0.000) 

1858.1 
(0.000) 

15652(0.000) 2250.9(0.000) 2148.6(0.000) 

ARCH 
ARCH (2) 

189.24 
(0.000) 

142.15 
(0.000) 

19.427(0.000) 145.75(0.000) 281.91(0.000) 

ARCH (5) 
120.07 
(0.000) 

92.154 
(0.000) 

16.634(0.000) 101.19(0.000) 85.840(0.000) 



Forest Chemicals Review 
www.forestchemicalsreview.com 
ISSN: 1520-0191  
March-April 2022 Page No. 1399-1423 
Article History: Received: 08 February 2022, Revised: 10 March 2022, Accepted: 02 April 2022, Publication: 30 April 2022 

 
 

1410 
 

ARCH (10) 
71.011 
(0.000) 

50.413 
(0.000) 

19.824(0.000) 56.810(0.000) 50.413(0.000) 

Box-Pierce(Q) 

Q(5) 37.9034(0.000) 21.2157(0.001) 30.4539(0.000) 20.0357(0.001) 14.7835(0.011) 
Q(20) 54.2441(0.000) 41.5426(0.002) 45.4519(0.001) 38.1386(0.009) 43.0566(0.002) 
Q

2
(5) 1011.33(0.000) 773.781(0.000) 106.993(0.000) 845.851(0.000) 1381.16(0.000) 

Q
2
(20) 3061.77(0.000) 1918.47(0.000) 510.843(0.000) 2522.98(0.000) 3664.12(0.000) 

Hurst-Mandelbrot R/S 1.8600 1.6444 1.4162 1.5350 1.5910 
Lo R/S 1.7628 1.5816 1.3560 1.4785 1.5603 
ADF -28.1419(0.000) -28.4777(0.000) -27.6007(0.000) -29.1322(0.000) -30.0818(0.000) 

Gaussian(d) 
0.0521 
(0.000) 

0.0298 (0.028) 0.0502(0.000) 0.0299(0.027) 0.0397(0.015) 

T 2725 

 

Note: In Box–Pierce (Q) test, Q represents the original sequence and Q
2
 represents the square of the original sequence. 

The p-values are in parentheses. Gaussian semi-parameter estimation is based on the correlation test of long memory 

proposed by Robinson and Henry (1999) [46]. 

 

From the results of the misspecification tests, the ADF test indicates that all series are stationary, and 

the results of the Jarque-Bera test and kurtosis test indicate that all series significantly rejects the normal 

distribution. The Skewness test results show that, except photovoltaic, all other series show significant left 

skewness, which to some extent indicates the existence of a long position risk in China's green energy 

market, so a skewed t-distribution is considered to be introduced into the model. The presence of extreme 

values of the photovoltaic industry returns observed may affect the test results. Therefore, the test will be 

continued in the next stage of model parameter estimation. The ARCH effect is significant in the residual 

of regression equation of each series with its own different lag order as an independent variable. The 

Box--Pierce test Q-values indicate that all five groups of series are auto-correlated. By combining the 

results of the Hurst--Mandelbrot R/S test and Lo R/S test, it is clear that the long memory of the mean of 

each series is insignificant. Additionally, the results of the Gaussian semi-parametric test with all 

significant d-values indicate the existence of long memory of the variance of each series. However, most 

of the d-values are below 0.5, indicating that the long memory may be weak. 

 

Combining the above statistical characteristics and test results, considering the possible long-memory 

characteristics of the variance of all five series, in order to better characterize them, this paper attempts to 

use the ARMA (p, q)-FIGARCH (p, d, q) model for the estimation of VaR of each industry under a 

skewed t-distribution. The Shanghai Composite Index (SH.000001) is included in each mean equation in 

order to eliminate the influence of the broad index volatility on the model fit and the estimation of the 

results. 

 

4.2 Empirical Results 

 

The empirical results of this paper are divided into two parts. The first part presents the results of the 

FIGARCH model fitting for each series and the VaRs analysis. The second part presents the results of the 

DCC-GARCH model estimation and the risk correlation and evolution trend analysis of China's Green 

Energy Industry with each sub-industry. 
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4.2.1 VaRs estimation and analysis 

 

Regarding the estimation of VaRs, after a full comparison of the statistical results of various models 

(the results of each model fitting are not shown in the main text due to limitations of space), the ARMA (1, 

1)-FIGARCH (1, d, 1) model is finally selected in this paper to fit the marginal distribution of all series.  

 

The parameter estimation results are shown in Table II, and the test results are shown in Table III. 

Taken together, the following summary can be made:  

 

a) The d-values for all five series are significant at the 0.001 significant level with a distribution 

interval of [0.473, 0.627]. This result indicates the existence of long memory for all series of volatility and 

shows the reasonableness of the FIGARCH (1, d, 1) model chosen to model each series. The photovoltaic 

industry has the highest long memory of volatility, the hydroelectric industry has the lowest, and the green 

energy industry is in the middle overall. The results are as expected. 

 

b) The values of the asymmetric parameter log(𝜉) for each series, including the photovoltaic 

industry’s, are significant at the 0.01 significant level, indicating that the selection of a skewed 

t-distribution is reasonable. 

 

c) Combining the results of the Kupiect test and the dynamic quantile (DQ) test, it can be found that 

the p-values both show that the original hypothesis cannot be rejected, indicating that the VaRs estimated 

using the ARMA (1, 1)-FIGARCH (1, d, 1) model is relatively accurate. 

 

d) In terms of the precision of the estimation results, larger p-values of the Kupiect test and DQ test 

represent higher precision. It can be found that the estimation results of Long Position are generally better 

than Short Position, which is consistent with the more market-oriented characteristics of Long Position 

trading in China (systemic risk is also more concentrated in Long Position). The results are better at the 

quantile of more extreme values. 

 

In summary, the VaRs calculated by applying the ARMA (1, 1)-FIGARCH (1, d, 1) model provides a 

set of systemic risk indicators representing China's Green Energy Industry and its sub-industries, which 

can be used as the next step in the analysis. 

 

TABLE II. Estimation results of the ARMA (1, 1)-FIGARCH (1, d, 1) model 

 

 
GEN WIN SOL NUC HYD 

Statistic 
t-val
ue 

P-va
lue 

Statistic 
t-val
ue 

P-va
lue 

Statistic 
t-val
ue 

P-va
lue 

Statistic 
t-val
ue 

P-va
lue 

Statistic 
t-val
ue 

P-va
lue 

𝛽0 
-0.0001(0.

000) 
-1.5
35 

0.12
5 

-0.0003(0
.000) 

-2.5
80 

0.01
0 

-0.0002(0.0
00) 

-1.5
96 

0.11
1 

-0.0002(0
.000) 

-2.0
28 

0.04
3 

0.00013(0
.000) 

1.43
4 

0.15
2 

𝛽1 
0.9706(0.0

20) 
47.5

9 
0.00

0 
1.1383 
(0.019) 

60.7
5 

0.00
0 

1.1815(0.0
22) 

53.3
3 

0.00
0 

1.1422 
(0.022) 

52.5
8 

0.00
0 

0.7435(0.
013) 

57.7
9 

0.00
0 

AR -0.5322(0. -2.9 0.00 -0.3558 -1.8 0.06 -0.8622(0.4 -2.1 0.03 -0.8613 -3.9 0.00 -0.6623(0 -3.5 0.00
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179) 73 3 (0.195) 27 8 07) 17 4 (0.218) 51 0 .188) 20 0 

MA 
0.5670(0.1

64) 
3.46

9 
0.00

1 
0.467207 
(0.197) 

2.37
6 

0.01
8 

0.9712(0.4
09) 

2.37
4 

0.01
8 

0.9166 
(0.222) 

4.13
3 

0.00
0 

0.6472(0.
185) 

3.50
6 

0.00
1 

𝜔0×
106 

116.2734(
47.38) 

2.45
4 

0.01
4 

53.6619 
(20.337) 

2.63
9 

0.00
8 

115.6909(5
6.893) 

2.03
3 

0.04
2 

90.7455 
(39.128) 

2.31
9 

0.02
1 

17.8583(6
.364) 

2.80
6 

0.00
5 

d 
0.5942(0.0

55) 
10.7

7 
0.00

0 
0.5069 
(0.069) 

7.39
3 

0.00
0 

0.6270(0.0
96) 

6.51
2 

0.00
0 

0.5858 
(0.076) 

7.67
4 

0.00
0 

0.4729(0.
061) 

7.70
2 

0.00
0 

𝛼1 
0.1890(0.0

87) 
2.16

4 
0.03

1 
0.3227 
(0.073) 

4.43
8 

0.00
0 

0.1317(0.0
50) 

2.62
0 

0.00
9 

0.3474 
(0.076) 

4.58
4 

0.00
0 

0.2901(0.
061) 

4.73
9 

0.00
0 

𝛾1 
0.6182(0.1

18) 
5.26

3 
0.00

0 
0.6633 
(0.095) 

6.99
7 

0.00
0 

0.8197(0.0
70) 

11.6
2 

0.00
0 

0.7339 
(0.078) 

9.38
1 

0.00
0 

0.6360(0.
069) 

9.18
5 

0.00
0 

log(𝜉) 
0.0840(0.0

26) 
3.22

3 
0.00

1 
-0.1461(0

.028) 
-5.3
20 

0.00
0 

-0.1134(0.0
29) 

-3.9
26 

0.00
0 

-0.0728(0
.028) 

-2.5
64 

0.01
0 

0.1115(0.
026) 

4.38
3 

0.00
0 

𝑣 
5.3104(0.5

09) 
10.4

4 
0.00

0 
5.1773 
(0.434) 

11.9
4 

0.00
0 

5.0419(0.4
47) 

11.2
7 

0.00
0 

5.7156 
(0.582) 

9.82
3 

0.00
0 

5.8231(0.
535) 

10.8
8 

0.00
0 

𝐿𝑜𝑔𝐿 11053.449 / 
0.00

0 
11174.87

1 
/ 

0.00
0 

10765.201 / 
0.00

0 
11139.02

4 
/ 

0.00
0 

11993.45
1 

/ 
0.00

0 

 

Note: St. Dev. are shown in parentheses; See Chung (1999) for more details [47]. 

 

TABLE III. Kupiec test and Dynamic Quantile test 

 

 

Kupiect test DQ test 

Short Position Long Position  Short Position Long Position 

Quantil

e 

Succes

s rate 

Kupie

c LRT 

P-valu

e 

Quantil

e 

Faild 

rate 

Kupie

c LRT 

P-valu

e 

Quantil

e 

Statisti

c 

P-valu

e 

Quantil

e 

Statisti

c 

P-valu

e 

GE

N 

0.9500 0.9512 
0.082

2 
0.7743 0.0500 

0.047

3 

0.413

1 
0.5204 0.950 3.9078 0.6892 0.0500 13.983 0.0298 

0.9750 0.9728 
0.505

7 
0.4770 0.0250 

0.025

3 

0.011

5 
0.9147 0.975 6.3546 0.3847 0.0250 7.3517 0.2896 

0.9900 0.9870 
1.148

2 
0.2839 0.0100 

0.011

7 

0.792

0 
0.3735 0.990 4.5368 0.604 0.0100 2.7393 0.8408 

0.9950 0.9956 
0.203

0 
0.6523 0.0050 

0.004

0 

0.544

3 
0.4607 0.995 0.4931 0.9979 0.0050 0.8572 0.9905 

0.9975 0.9978 
0.101

3 
0.7503 0.0025 

0.001

1 

2.709

5 
0.0998 0.9975 0.1774 0.9999 0.0025 4.8671 0.5610 

WIN 

0.9500 0.9512 
0.082

2 
0.7743 0.0500 

0.051

4 

0.107

7 
0.7428 0.950 10.686 0.0986 0.0500 6.7979 0.3399 

0.9750 
 

0.9776 

0.791

7 
0.3736 0.0250 

0.027

2 

0.505

7 
0.4770 0.975 11.530 0.0733 0.0250 10.921 0.0909 

0.9900 0.9890 
0.271

4 
0.6024 0.0100 

0.010

6 

0.111

2 
0.7388 0.990 10.477 0.1059 0.0100 5.3703 0.4973 

0.9950 0.9941 
0.393

9 
0.5303 0.0050 

0.005

9 

0.393

9 
0.5303 0.995 0.8237 0.9914 0.0050 0.8425 0.9909 

0.9975 0.9967 
0.639

1 
0.4240 0.0025 

0.001

5 

0.001

5 
0.2421 0.9975 0.6854 0.9948 0.0025 2.0102 0.9188 

SOL 0.9500 0.9538 
0.847

6 
0.3572 0.0500 

0.049

1 

0.042

9 
0.8360 0.950 12.627 0.0494 0.0500 3.1019 0.7960 
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0.9750 0.9784 
1.325

8 
0.2496 0.0250 

0.026

4 

0.216

2 
0.6420 0.975 3.8443 0.6977 0.0250 4.2565 0.6420 

0.9900 0.9897 
0.019

6 
0.8888 0.0100 

0.008

4 

0.713

3 
0.3984 0.990 2.9753 0.8119 0.0100 1.8241 0.9351 

0.9950 0.9938 
0.773

7 
0.3791 0.0050 

0.003

7 

1.073

8 
0.3001 0.995 1.2219 0.9758 0.0050 1.5143 0.9585 

0.9975 0.9960 
2.166

3 
0.1411 0.0025 

0.002

6 

0.004

9 
0.9445 0.9975 1.8245 0.9351 0.0025 0.0962 

0.9999

8 

NU

C 

0.9500 0.9505 
0.012

1 
0.9124 0.0500 

0.049

2 

0.039

3 
0.8428 0.950 3.6921 0.7183 0.0500 11.492 0.0743 

0.9750 0.9795 
2.354

1 
0.1250 0.0250 

0.021

7 

1.312

1 
0.2520 0.975 5.1815 0.5208 0.0250 2.5032 0.8681 

0.9900 0.9905 
0.058

8 
0.8084 0.0100 

0.008

8 

0.407

9 
0.5230 0.990 3.3509 0.7637 0.0100 4.2537 0.6424 

0.9950 0.9941 
0.393

9 
0.5303 0.0050 

0.004

4 

0.203

0 
0.6523 0.995 0.8425 0.9909 0.0050 0.4931 0.9979 

0.9975 0.9967 
0.639

1 
0.4240 0.0025 

0.003

7 

1.305

3 
0.2533 0.9975 0.6854 0.9948 0.0025 1.2077 0.9765 

HY

D 

0.9500 0.9439 
2.088

2 
0.1484 0.0500 

0.051

7 

0.172

4 
0.6780 0.950 2.6375 0.8528 0.0500 7.8438 0.2498 

0.9750 0.9725 
0.689

4 
0.4064 0.0250 

0.027

5 

0.689

4 
0.4064 0.975 2.8511 0.8273 0.0250 7.5442 0.2734 

0.9900 0.9879 
1.148

2 
0.2839 0.0100 

0.008

1 

1.093

7 
0.2957 0.990 3.1738 0.7867 0.0100 2.1994 0.9005 

0.9950 0.9934 
1.281

8 
0.2576 0.0050 

0.004

0 

0.544

3 
0.4607 0.995 1.6908 0.9458 0.0050 0.8572 0.9904 

0.9975 0.9967 
0.639

1 
0.4240 0.0025 

0.001

8 

0.533

0 
0.4654 0.9975 0.6854 0.9948 0.0025 0.7048 0.9944 

 

Note: In the Dynamic Quantile regression, p = 5. 

 

Fig 6 shows the kernel of estimated VaR for long and short positions for each index. We select the 

0.05, 0.025, 0.01 quartiles of the long position and the 0.95, 0.975, 0.99 quartiles of the short position 

correspondingly for progressive display. It can be found that the skewness of the VaRs distribution of each 

index and the long position curve is clearly differentiated by the degree of leftward skewness, in order of 

photovoltaic, wind power, nuclear power, green energy, and hydropower. The rightward skewness of the 

short position is not as obvious as the long position, but the ranking is consistent with the long position. 

The degree of the left (right) skew indicates to some extent the magnitude of systemic risk for each 

industry. It is clear that the photovoltaic industry has the highest systematic risk and that the hydropower 

industry has the lowest systematic risk. From the concentration of VaRs distribution, the distribution of 

VaR in the short position for each index is more concentrated towards the mean than the long position, 

which means that systemic risk for each industry may be more concentrated in the long position. 
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Long Position Short Position 

  

  

 
 

 

Fig 6: Kernel of VaR for long and short positions for each index 

 

Fig 7 shows the VaRs of China's Green Energy Industry and its sub-industries, with regards to the long 

position at the 𝛼= 0.05, 0.01, 0.0025 quantiles and the short position at 𝛼= 0.95, 0.99, 0.9975 quantiles, 

respectively. There is an overlay of short position values and long position values for both the Green 

Energy Industry and its four sub-industries. That is, Short Position VaRs are negative when certain long 

position VaRs are positive. This implies that the risk of equity capital in the Chinese green energy industry 

is somewhat controllable, which may be due to the strict regulatory policies of the Chinese capital market. 

 

4.2.2 DCC-GARCH estimation and analysis 

 

Following the general estimation procedure of the DCC-GARCH model, the residual series obtained 

by constructing the univariate ARMA-FIGARCH model for each index in the previous section are used to 

obtain five standardized residual series after standardizing them separately. Then, the GARCH (1, 1) 
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models were constructed separately to examine the dynamic conditional correlation among 5 industries.  

 

Table 4 shows the parameters of the univariate GARCH (1, 1) model for the standardized residual 

series of each index. It can be seen that both the ARCH term coefficient (α) and the GARCH term 

coefficient (β) reach a significant level and that the sum of both is less than 1, satisfying the model 

constraints. 

 

GEN 

   

WIN 

   

SOL 

   

NUC 

 
 

 

HYD 

   

 

Fig 7: VaR for each index with the long positions and the short positions 
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TABLE IV. Standardized residuals’ GARCH (1, 1) model parameters 

 

  Coefficient t-value t-value α+β 

GEN(std) 
α -0.0157 (0.004) -3.576 0.000 

0.794 
β 0.8099 (0.048) 16.72 0.000 

WIN(std) 
α -0.0262 (0.001) -20.18 0.000 

0.808 
β 0.8337 (0.057) 14.68 0.000 

SOL(std) 
α -0.0044 (0.000) -10.86 0.000 

0.970 
β 0.9747 (0.022) 44.56 0.000 

NUC(std) 
α -0.0197 (0.009) -2.185 0.029 

0.857 
β 0.8767(0.042) 21.10 0.000 

HYD(std) 
α -0.0276 (0.010) -2.740 0.006 

0.704 
β 0.7319 (0.148) 4.934 0.000 

 

Table V shows the estimation results of the conditional correlation coefficients between the green 

energy industry and the four sub-industries. It can be seen that the conditional correlation coefficients 

between the green energy industry and each sub-industry are all reach a significant level of 0.01. α > 0, β > 

0, and 0 < α+β < 1, and all are significant at the 0.01 significant level, satisfying the model constraints. 

Table 6 shows the results of the multivariate mixed parameter tests using the Hosking test and Li-McLeod 

test [48,49], indicating that the estimation results of the DCC-GARCH model parameters are reliable.  

 

TABLE V. Estimated results of conditional correlation coefficients 

 

 Mean t-value p-value Min Max std.dev 
GEN-WIN 0.5052(0.023) 22.06 0.000 0.1855 0.7257 0.0678 
GEN-SOL 0.4620(0.034) 13.66 0.000 0.0711 0.7199 0.0738 
GEN-NUC 0.4765 (0.023) 20.37 0.000 -0.0187 0.6727 0.0750 
GEN-HYD 0.3608 (0.0270) 13.35 0.000 0.0595 0.6059 0.0833 
WIN-SOL 0.7192 (0.051) 14.19 0.000 0.2566 0.8631 0.0533 
WIN-NUC 0.7115 (0.016) 44.41 0.000 0.4230 0.8682 0.0549 
WIN-HYD 0.2068 (0.032) 6.433 0.000 -0.2231 0.5841 0.0990 
SOL-NUC 0.5955 (0.050) 12.04 0.000 0.0832 0.8125 0.0651 
SOL-HYD 0.1676 (0.031) 5.498 0.000 -0.1913 0.5271 0.0651 
NUC-HYD 0.1994 (0.032) 6.303 0.000 -0.1227 0.5271 0.0943 

α 0.0367(0.012) 3.138 0.002 / / / 
β 0.8836(0.061) 14.60 0.000 / / / 

Log-Lik -16548.932    

 

TABLE VI. Hosking test and Li-McLeod test 

 

 H H
2
 Li−McL Li−McL

2
 

Q(5) 144.660 (0.110) 114.048 (0.706) 144.674 (0.110) 114.077 (0.706) 

Q(10) 261.115 (0.302) 220.720 (0.893) 261.146 (0.301) 220.808 (0.892) 

Q(20) 506.590 (0.410) 422.866 (0.994) 506.700 (0.408) 423.233 (0.993) 
Note: H and H

2
 , Li-McL and Li-McL

2
 are the multivariate portmanteau statistics of Hosking test and Li-McL test, 

respectively, with a maximum lag of 20 orders and p-values in parentheses. 



Forest Chemicals Review 
www.forestchemicalsreview.com 
ISSN: 1520-0191  
March-April 2022 Page No. 1399-1423 
Article History: Received: 08 February 2022, Revised: 10 March 2022, Accepted: 02 April 2022, Publication: 30 April 2022 

 
 

1417 
 

According to the information provided in Table V, if we examine the correlation between the green 

energy industry and the constituent industries in terms of the mean value of the conditional correlation 

coefficient, the ranking is wind power, nuclear power, photovoltaic power, and hydroelectric power, in that 

order. In terms of the volatility of the conditional correlation coefficients, the ranking is hydroelectric, 

nuclear, photovoltaic, and wind power, in that order. Combined with the VaRs above, the wind power 

industry has the highest correlation and the lowest volatility with the green energy industry, indicating that 

the risk impact of wind power on the green energy industry is likely to be stable and continuous. The 

correlation between hydropower and the green energy industry is the lowest, and volatility is the highest, 

indicating that hydropower's risk impact on the green energy industry is somewhat uncontrollable. The 

correlation between nuclear power and the green energy industry and its volatility are both slightly higher 

than photovoltaic, which is also surprising. This may imply that China's photovoltaic industry is embarking 

on a new development mode after its initial laissez-faire development, while the development of the 

nuclear power industry does not seem to be as prudent and steady as generally believed. The above 

speculations are to be further explored in the context of the time-varying characteristics of the conditional 

correlation coefficient. Second, from the correlation between each sub-industry, the conditional correlation 

coefficients between the wind power industry and the photovoltaic industry, and the nuclear power 

industry and between the photovoltaic industry and the nuclear power industry are high and less volatility. 

Combined with their VaRs, these three industries may constitute the main force of systemic risk in China's 

Green Energy Industry. The conditional correlation coefficients between the hydropower industry and the 

other three industries are small, and volatility is large, indicating that the specific direction and choice of 

investors may have changed significantly when investing in China's Green Energy Industry. 

 

Fig 8-11 show the volatility of the DCCs of between China's Green Energy Industry and the wind 

power, photovoltaic, nuclear power and hydropower industries, respectively. It can be seen visually that 

the correlation between the green energy industry and each sub-industry shows a significant time-varying 

and dramatic volatility during the period examined in this paper. Among them, (1) the volatility plot of the 

DCC between the green energy industry and wind power industry shows that the correlation between these 

two has been at a high level, and the volatility is strong. The strong volatility appears from October 2013 to 

December 2014. After 2020, the correlation shows a significant upward trend, and the volatility tends to 

weaken. (2) The volatility plot of the DCC between the green energy industry and photovoltaic industry 

show more obvious time period differences. Between 2010 and 2015, volatility was stronger. Since 2015, 

volatility has gradually decrease. From 2018 to the present, the correlation between the two shows a 

gradually decreasing trend. (3) The volatility plot of the DCC between green energy industry and nuclear 

power industry shows that the correlation between the two is low and volatility is high before 2015. 

However, after 2015, the correlation between the two is significantly higher, and volatility is significantly 

lower. (4) The volatility plot of the DCC between the green energy industry and the hydropower industry 

shows that, from 2010 to 2014, the correlation is high and volatility is low. Between 2014 and 2015, the 

correlation decreases while volatility increases significantly. From 2015 to the present, the correlation is 

significantly lower and volatility is at a high level.  
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Fig 8: Volatility plot of DCC between GEN and WIN 

 

 
 

Fig 9: Volatility plot of DCC between GEN and SOL 

 

 
 

Fig 10: Volatility plot of DCC between GEN and NUC 
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Fig 11: Volatility plot of DCC between GEN and HYD 

 

V. CONCLUSION 

 

By comparing the VaRs of the China's Green Energy Industry and its sub-industries and further 

analyzing their dynamic correlations, a more comprehensive understanding of the systemic risks and 

structural evolution of China's green energy industry over the past decade can be gained, and there are 

several issues that deserve our attention: Firstly, hydropower industry with the largest share of installed 

capacity and the highest total market value has the lowest overall systemic risk. Compared with the other 

three sub-industries, it has an obvious advantage in terms of stability, which may be related to its large 

investment scale and long construction cycle, resulting in a higher share of government funds in the 

construction process. Its low systemic risk is accompanied by a low expected return, indicating that its 

positioning as a public service project has very limited acceptance and attractiveness to social capital. 

Combined with the DCC data, its contribution to the overall risk of the green energy industry also shows a 

significantly lower trend after July 2014. Secondly, the systemic risk of the photovoltaic industry has 

improved significantly over the selected observation period, although it has experienced severe 

overcapacity and low-level expansion during its development. This is clearly related to the increasing 

technology and decreasing cost of power generation in it[50]. It is worth noting that the systemic risk of 

the wind power industry is almost the same as the photovoltaic power industry although its scale is still 

relatively weak. Thirdly, the systemic risk of nuclear power industry has approached that of the wind 

power industry, though governments and markets are generally cautious about developing the nuclear 

power industry due to safety concerns. Its correlation with the green energy industry has increased 

significantly after June 2015, and its volatility has decreased, which implies that the nuclear power 

industry has become one of the main sources of systemic risk for China's Green Energy Industry, and its 

share may be higher than generally believed. Fourthly, the systemic risk level of the photovoltaic industry 

has gradually become mediocre during the period examined in this paper. Since August 2015, its 

correlation with the green energy industry has significantly decreased. Its volatility has become lower, 

indicating that its risk spillover effect on the green energy industry is also converging. Combined with the 

technological breakthroughs achieved in China in areas such as ultra-high voltage transmission and 

photovoltaic efficiency, and the continued reduction of costs due to the scale effect[50,51], this could mean 

that China's photovoltaic industry has changed from its previous crude development mode to a new 

intensive and sustainable development stage. Finally, both for China’s Green Energy Industry in general 
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and for its major sub-industries, the period around 2015 was an important demarcation point. During this 

period, the Chinese stock market experienced a historic level of violent shocks, the absolute value of 

systemic risk for each index reached its highest level during the period under examination. And the level of 

risk spillover between China’s Green Energy Industry and its sub-industries increased and experienced 

dramatic volatility. After 2015, the systemic risk and structure of China's Green Energy Industry entered a 

new stage of evolution.  

 

The above empirical results and related analysis provide a more in-depth and comprehensive 

understanding of the development of China's Green Energy Industry. The lessons learned are worthy of 

reference for other countries in greening their own energy systems to a certain extent.  
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