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Abstract: 

This paper investigates the optimal monitoring and robust control of an array of forest fire processes 

modelled as spatial diffusion processes with uncertainty. An optimized framework is proposed for mobile 

measurement and control of forest fires using mobile actuator-sensor networks with multiple packet 

losses. By employing Lyapunov functional approach, some sufficient conditions are derived under 

decentralized output feedback control strategy. The robust stability criterion includes linear operator 

inequalities and velocity laws for mobile actuation-sensing devices. Also, the case of collocated control 

and non-collocated control are discussed in the results. Finally, a simulation example is provided to 

demonstrate the results obtained. 

Keywords: Spatial diffusion processes, forest fire model, Mobile sensors, Mobile actuators, Uncertain, 

Multiple loss packets. 

 

I. INTRODUCTION 

 

In recent years, large forest fires have occurred frequently around the world, causing huge economic 

losses. How to effectively monitor and control forest fires is becoming a growing concern. The modelling 

of forest fires is the basis for the study of forest fire monitoring and control. Numerous researchers, starting 

from statistical methods
[1]

, machine learning
[2]

, gray analysis
[3]

, ecological mathematics
[4]

, and linear 

systems
[5]

, have conducted in-depth studies on forest fires and given relevant mathematical models, 

obtaining a series of good results. Further, when considering the spatio-temporal characteristics of fire 

occurrence in the forest fire model, the spatio-temporal spread-diffusion model of forest fires can be 

obtained from the physical mechanism, using the temperature field as the basic state to describe the fire 

and according to the heat conduction, radiation and convection laws[
6-7]

. These describe the diffusion 

process of forest fires can be expressed as parabolic partial differential equations
[8]

, which are called 

distributed parameter systems(DPSs). 
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With the rapid development of embedded technology, wireless sensor networks have been widely used 

due to its low cost, low power, and its sensing and computing ability. Especially in the monitoring of forest 

fires, wireless sensor networks have played an important role
[9-10]

. However, for unknown forest fires, the 

environment is harsh and uncertain, and the wireless sensor network nodes are easily damaged. Moreover, 

the need to place a large number of sensing nodes in the forest makes the cost and energy consumption 

increase significantly. Currently, mobile robotics is becoming increasingly sophisticated. Mobile 

actuation-sensing devices are obtained by adding sensors and actuators to mobile devices. By 

communicating several mobile actuation-sensing devices, their cooperation forms a mobile actuator-sensor 

network. 

 

Earlier work on study of mobile actuator and sensor networks can be divided into two cases roughly. 

One is about the control problems on mobile actuator and sensor networks utilizing multi-agent 

systems
[11-12]

. The other is about actuating and sensing device optimization in DPSs. Orlov
[13]

 studied the 

model of distributed parameter control systems in heat processing using sliding mode control method for 

the first time. The analysis and control of parabolic partial differential equations with input constraints 

based on Galerkin approximation is developed in [14]. The study on mobile control of moving actuators 

and sensors in processes governed by DPSs in [15]. Demetriou
[16]

 provided an optimized framework for 

the performance improvement of mobile sensors and actuators in DPSs using the Lyapunov stability 

arguments. So far, a number of useful conclusions about control of DPSs were obtained. 

 

Usually, parameter uncertainties are inevitable in dynamical system due to error of measurement and 

hardware implementation of system. They are probably one of the main sources contribute to instability of 

dynamical systems. Also, it is very common in engineering applications that the measurement output of 

mobile actuators and sensors networks is lost or partially lost due to different causes, i.e. sensor failure and 

missing measurement caused by the network. Wang and his collaborators consider missing measurements 

phenomenon in control problem of discrete stochastic nonlinear systems. There have been very few studies 

dealing with the control of spatial diffusion processes in uncertain environments with multiple missing 

measurements using mobile actuator and sensor networks, to the best of the authors' knowledge up to now. 

 

In this paper, we will focus upon the optimal mobile monitoring and robust control of a class of 

diffusion processes in uncertain environments. The uncertainty of the diffusion system and the packet loss 

of multiple data in mobile sensing make the study more valuable for engineering applications. The 

sufficient conditions can be found by applying the Lyapunov functional for optimized stability are 

established including linear operator inequalities(LOIs) and velocity control law. 

 

. And, the simplified stability scheme is also proposed by the velocity law of each moving actuator and 

sensor if an appropriate Lyapunov functional is introduced. 

 

Notation and Preliminaries. The notation used in the paper is quite standard. Throughout this paper, 

𝐑𝑛 denotes the 𝑛-dimensional Euclidean space with the norm | ⋅ |. 𝑓′(𝜉) means the derivative of the 

function 𝑓 with respect to 𝜉 and 𝑓̇ (𝑡) means 𝑓 relative to the rate of time change. The notation 
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𝒫 > 0  where 𝒫  is symmetric, means that 𝒫  is positive definite, whereas 𝜆max(𝒫) (respectively, 

𝜆min(𝒫)) denotes its largest (respectively, smallest) eigenvalue. In symmetric block matrices, the star ⋆ is 

used to denote an ellipsis term that is induced by symmetry. 

 

Let ℋ be a Hilbert space with inner product ⟨⋅,⋅⟩ and corresponding induced norm | ⋅ |. ℒ(ℋ) 

denotes all bounded linear operators from ℋ to ℋ. Given 𝒫:ℋ → ℋ be a linear operator with dense 

domain 𝒟(𝒫) in ℋ, whereas 𝒫∗ means its adjoint operator. The notation 𝒫 > 0 means that 𝒫 is 

strictly positive definite, where 𝒫 is self-adjoint operator in sense i.e. 𝒫 = 𝒫∗ and there exists a constant 

𝑐 > 0  such that ⟨𝑥, 𝒫𝑥⟩ ≥ 𝑐⟨𝑥, 𝑥⟩  and for all 𝑥 ∈ 𝒟(𝒫) . 𝒫 ≥ 0  means that nonnegative definite 

operator 𝒫 is self-adjoint and ⟨𝑥, 𝒫𝑥⟩ ≥ 0 for all 𝑥 ∈ 𝒟(𝒫). In addition, ℐ is the identity operator. 

𝔼{⋅} stands for the mathematical expectation operator. 

 

The domain of operator 𝒜  can be defined in the following 

forms:(𝑥, 𝑦)𝒟(𝒜) = ⟨𝑥, 𝑦⟩ + ⟨𝒜𝑥,𝒜𝑦⟩, 𝑥, 𝑦 ∈ 𝒟(𝒜) if the operator 𝒜 generates a strongly continuous 

semigroup 𝑇(𝑡) on the Hilbert space ℋ. Furthermore, the induced norm ∥ 𝑇(𝑡) ∥ of the semigroup 

𝑇(𝑡) satisfies ∥ 𝑇(𝑡) ∥≤ 𝜎𝑒  𝜔𝑡 with some constant 𝜎 and grown bound 𝜔. 

 

II. PROBLEM FORMULATION 

 

In this paper, we consider an array of forest fire processes which described by spatial diffusion 

processes with uncertainty. This one-dimensional system represents the forest belt and its model can 

approximate the actual combustion process. 

 

𝜕𝑄(𝑡, 𝜉)

𝜕𝑡
=  

𝜕

𝜕𝜉
(𝛼(𝜉)

𝜕𝑄(𝑡, 𝜉)

𝜕𝜉
) − (𝑎 + 𝛥𝑎(𝑡))𝑄(𝑡, 𝜉)

 +∑𝑓𝑖

𝑛

𝑖=1

(𝜉; 𝜉𝑖
𝑎(𝑡))(𝑏𝑖 + 𝛥𝑏𝑖(𝑡))𝑢𝑖(𝑡),

 

𝑦(𝑡) = [

𝑦1(𝑡)

𝑦2(𝑡)
  ⋮
𝑦𝑛(𝑡)

] =

[
 
 
 
 
 
 
 ∫ 𝛾1

𝑙

0

𝑔1(𝜉; 𝜉1
𝑠(𝑡))𝑐1𝑄(𝑡, 𝜉)𝑑𝜉

∫ 𝛾2

𝑙

0

𝑔2(𝜉; 𝜉2
𝑠(𝑡))𝑐2𝑄(𝑡, 𝜉)𝑑𝜉

     ⋮

∫ 𝛾𝑛

𝑙

0

𝑔𝑛(𝜉; 𝜉𝑛
𝑠(𝑡))𝑐𝑛𝑄(𝑡, 𝜉)𝑑𝜉

]
 
 
 
 
 
 
 

, #(1)  

 

subject to the Dilichlet boundary condition 

 

𝑄(𝑡, 0) = 𝑄(𝑡, 𝑙) = 0, #(2)  
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and the initial condition 

 

𝑄(0, 𝜉) = 𝑄0(𝜉), #(3)  

 

where 𝑄(𝑡, 𝜉) denotes temperature of the diffusion process, 𝜉 ∈ 𝛺 = [0, 𝑙] is the spatial variable and 

𝑡 ∈ 𝐑+ is the time variable. The transmission diffusion operator 𝛼(𝜉) ≥ 𝛼0 > 0, 𝑎, 𝑏𝑖 and 𝑐𝑖 are constant 

parameters. The nonnegative smooth function 𝑓𝑖(𝜉; 𝜉𝑖
𝑎(𝑡)) represents the spatial distribution of 𝑖th moving 

actuator, where 𝜉𝑖
𝑎(𝑡) ∈ [0, 𝑙] is the time-varying centroid of 𝑖th actuator. Similarly, the spatial distribution 

of 𝑗th moving sensor is represented by the nonnegative smooth function 𝑔𝑖(𝜉; 𝜉𝑖
𝑠(𝑡)), where 𝜉𝑖

𝑠(𝑡) ∈ [0, 𝑙] 

is the time-varying centroid of 𝑖 th sensor. The spatial distribution of moving actuators and sensors 

mentioned above shows each different actuator and sensor has different distribution. 𝑢𝑖(𝑡) denotes the 𝑖th 

component of a control signal. 

 

In this paper, moving sensors for the measurement data missing are considered. 

𝛬𝛾 = diag{𝛾1, 𝛾2, ⋯ , 𝛾𝑛} with the stochastic variable 𝛾𝑖 ∈ 𝐑 is a Bernoulli distributed white sequence 

taking values of 1 and 0. It has 

 

{
Prob{𝛾𝑖 = 1} = 𝛾𝑖,

Prob{𝛾𝑖 = 0} = 1 − 𝛾𝑖.
 

 

Here, 𝛾𝑖 ∈ [0,1] are known constants. We denote 𝛾𝑖 = 𝔼{𝛾𝑖}, while 𝛬𝛾 = diag{𝛾
1
, 𝛾

2
, ⋯ , 𝛾

𝑛
}. 

Then, the system (1) can be rewritten in the following compact form: 

 

{
𝑄̇ (𝑡) = (𝒜 + 𝛥𝒜)𝑄(𝑡) + ℱ(𝜉𝑎(𝑡))(ℬ + 𝛥ℬ)𝑢(𝑡),

𝑦(𝑡) = 𝛬𝛾𝒞𝒢(𝜉𝑠(𝑡))𝑄(𝑡),
#(4)  

 

Here, the state space is ℋ = 𝐿2(𝛺), where 𝑄(𝑡,⋅) = {𝑄(𝑡, 𝜉): 0 ≤ 𝜉 ≤ 𝑙} is the instantaneous state of 

the system. Let infinitesimal operator 𝒜 =
𝑑

𝑑𝜉
(𝛼(𝜉)

𝑑

𝑑𝜉
) − 𝑎 and its domain is given by 𝒟(𝒜) = {𝜓 ∈

𝐿2(𝛺): 𝜓, 𝜓′ are absolutely continuous, 𝜓″ ∈ 𝐿2(𝛺) and 𝜓(0) = 𝜓(𝑙) = 0}. Obviously, since 𝑎(𝜉) > 0, 

then the operator 𝒜 is bounded and satisfy −𝒜 > 0. The infinitesimal operator 𝒜 generates a strongly 

continuous semigroup 𝑇(𝑡), 𝑡 ≥ 0 and the domain 𝒟(𝒜) of the operator 𝒜 is dense in ℋ. ℬ and 𝒞 

denote, respectively, input coefficient operator and output coefficient operator. 

 

Uncertain linear operators 𝛥𝒜, 𝛥ℬ ∈ ℒ(ℋ) are bounded perturbations of the infinitesimal operator 

𝒜, ℬ respectively. Such parameter uncertainties satisfy the following admissible condition: 

 

𝛥𝒜∗𝛥𝒜 ≤ 𝒜̂ , 𝛥ℬ∗𝛥ℬ ≤ ℬ̂ , #(5)  

 

where 𝒜̂ > 0, ℬ̂ > 0. 
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The input operator ℱ(𝜉𝑎(𝑡)) is linear and bounded, which is formulated as 

 

ℱ(𝜉𝑎(𝑡))𝑢(𝑡) = [𝑓1(𝜉1
𝑎(𝑡)), 𝑓2(𝜉2

𝑎(𝑡)),⋯ , 𝑓𝑛(𝜉𝑛
𝑎(𝑡))] [

𝑢1(𝑡)
𝑢2(𝑡)
  ⋮
𝑢𝑛(𝑡)

], 

 

with actuator location vector provided by 𝜉𝑎(𝑡) = [𝜉1
𝑎(𝑡), 𝜉2

𝑎(𝑡),⋯ , 𝜉𝑛
𝑎(𝑡)]. Similarly, the output operator 

𝒢(𝜉𝑠(𝑡)) is also linear and bounded, which is written as 

 

𝒢(𝜉𝑠(𝑡))𝑄(𝑡) =

[
 
 
 
 
 
 
 ∫ 𝑔1

𝑙

0

(𝜉; 𝜉1
𝑠(𝑡))𝑄(𝑡, 𝜉)𝑑𝜉

∫ 𝑔2

𝑙

0

(𝜉; 𝜉2
𝑠(𝑡))𝑄(𝑡, 𝜉)𝑑𝜉

    ⋮

∫ 𝑔𝑛

𝑙

0

(𝜉; 𝜉𝑛
𝑠(𝑡))𝑄(𝑡, 𝜉)𝑑𝜉

]
 
 
 
 
 
 
 

, 

 

where the output measurement operator is the vector of sensor location parameterized by 𝜉𝑠(𝑡) =

[𝜉1
𝑠(𝑡), 𝜉2

𝑠(𝑡),⋯ , 𝜉𝑛
𝑠(𝑡)] . According to the description in (1), it is easy to get ℱ(𝜉𝑎(𝑡)) ≥ 0  and 

𝒢∗(𝜉𝑠(𝑡)) ≥ 0. 

 

In this paper, we consider the following decentralized output feedback control strategy: 

 

𝑢𝑖(𝑡) = −𝑘𝑖𝑦𝑖(𝑡) = −𝑘𝑖 ∫ 𝛾𝑖

𝑙

0

𝑐𝑖𝑔𝑖(𝜉; 𝜉𝑖
𝑠(𝑡))𝑄(𝑡, 𝜉)𝑑𝜉, #(6)  

 

for 𝑘𝑖 > 0, 𝑖 = 1,2,⋯ , 𝑛. 

 

Also, it can be written in matrix form 

 

𝑢(𝑡) = −𝐾𝑦(𝑡), #(7)  

 

with 𝐾 = diag{𝑘1, 𝑘2, ⋯ , 𝑘𝑛} is the control gain matrix. 

 

In fact, the locally decentralized controller (6) or (7) for actuators and sensors can be utilized 

effectively owing to the advanced technology of actuation and sensing. The recent advances of 

micro-electro-mechanical systems, make it easy to implement this class of controllers in a large number of 

moving actuators and sensors. 
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For presentation convenience, we denote 𝒜̃ = 𝒜 + 𝛥𝒜 and ℬ̃ = ℬ + 𝛥ℬ. With the decentralized 

output feedback control policy (6), we can study the system in the following form 

 

𝑄̇ (𝑡) =  (𝒜̃ − ℬ̃ (𝜉𝑎(𝑡))𝐾 𝒞̃ (𝜉(𝑡)))𝑄(𝑡)

=  𝒜𝑐(𝜉(𝑡))𝑄(𝑡)
#(8)  

 

where ℬ̃ (𝜉𝑎(𝑡)) = ℱ(𝜉𝑎(𝑡)) ℬ̃ , 𝒞̃ (𝜉𝑠(𝑡)) = 𝛬𝛾𝒞𝒢(𝜉𝑠(𝑡)) and denotes 𝔼{𝒞̃ (𝜉𝑠(𝑡))} = 𝒞(𝜉𝑠(𝑡)) . From 

distributed parameter system (8) with parameter uncertainties, 𝛥𝒜 and 𝛥ℬ are bounded linear operators. 

Then the operator 𝒜̃  and ℬ̃  are dissipative operators follows from an application of Kato-Rellich 

Theorem. In this case, one may easily assume that ℱ(𝜉𝑎(𝑡)) and 𝒢(𝜉𝑠(𝑡)) are commutative, then the 

product of ℱ(𝜉𝑎(𝑡))  and 𝒢(𝜉𝑠(𝑡))  is nonnegative definite. Consequently, ℬ̃ (𝜉𝑎(𝑡))𝐾 𝒞̃ (𝜉𝑠(𝑡))  is 

bounded and nonnegative definite. Also, −𝒜𝑐(𝜉(𝑡)) is bounded and nonnegative definite. 

 

Definition 1 The spatial diffusion processes is said to be globally asymptotically stable in the mean square 

if 

 

                              lim
𝑡→+∞

𝔼|𝑄(𝑡)|2 = 0,                            (9)  

 

holds. 

 

Definition 2 The uncertain spatial diffusion processes (4) is said to be robustly globally asymptotically 

stable in the mean square if the system (4) is globally asymptotically stable in the mean square for all 

admissible parameter uncertainties. 

 

III. MAIN RESULTS AND PROOFS 

 

To achieve the major results, the following lemmas are introduced.. 

 

Lemma 1 Given linear operators 𝒫 and 𝒬 and a scalar 𝛽 > 0. Then for any 𝑥, 𝑦 ∈ ℋ, 

 

2⟨𝑥, 𝒫𝒬𝑦⟩ ≤ 𝛽−1⟨𝑥, 𝒫𝒫∗𝑥⟩ + 𝛽⟨𝑦, 𝒬∗𝒬𝑦⟩. 

 

Proof: It is readily seen that 

 

0 ≤ ⟨𝒫∗𝑥 − 𝛽𝒬𝑦,𝒫∗𝑥 − 𝛽𝒬𝑦⟩

= ⟨𝑥, 𝒫𝒫∗𝑥⟩ − 2𝛽⟨𝑥, 𝒫𝒬𝑦⟩ + 𝛽2⟨𝑦, 𝒬∗𝒬𝑦⟩
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Hence, we have 

 

2⟨𝑥, 𝒫𝒬𝑦⟩ ≤ 𝛽−1⟨𝑥, 𝒫𝒫∗𝑥⟩ + 𝛽⟨𝑦, 𝒬∗𝒬𝑦⟩. 

 

Especially, 

 

2⟨𝑥, 𝒫𝒬𝑦⟩ ≤ 𝛽−1⟨𝑥, 𝒫𝒫∗𝑥⟩ + 𝛽⟨𝑦, 𝒬̂ 𝑦⟩. 

 

if 𝒬 satisfying 𝒬∗𝒬 ≤ 𝒬̂. 

 

Lemma 2 (Barbalat’s Lemma ) A function 𝑓(𝑡) satisfies lim
𝑡→+∞

𝑓(𝑡) = 0, if 𝑓(𝑡) ≥ 0 is Lebesgue 

integrable and uniformly continuous on [0, +∞). 

 

The main results of this paper are given in the following theorem. 

 

Theorem 1 The uncertain spatial diffusion processes with multiple packet losses (4) is robustly 

globally asymptotically stable in the mean square if there exist constants 𝛽 > 0, a linear operator 

𝒫(𝜉(𝑡)) > 0 subject to 𝑐⟨𝑄(𝑡), 𝑄(𝑡)⟩ ≤ ⟨𝑄(𝑡), 𝒫(𝜉(𝑡))𝑄(𝑡)⟩ ≤ 𝑏 [⟨𝑄(𝑡), 𝑄(𝑡)⟩ + ⟨𝒜𝑄(𝑡),𝒜𝑄(𝑡)⟩], for 

two positive constants 𝑏, 𝑐 such that the following operator-dependent LOIs hold in the Hilbert space 

𝒟(𝒜): 

 

𝛹(𝜉(𝑡)) =

[
 
 
 
 𝛶(𝜉(𝑡)) 𝒫(𝜉(𝑡)) 𝒫(𝜉(𝑡))ℱ(𝜉𝑎(𝑡)) 𝛽2𝒢

∗(𝜉𝑠(𝑡))𝒞∗𝛬𝛾𝐾 ℬ̂

⋆ −𝛽1𝐼 0 0
⋆ ⋆ −𝛽2𝐼 0

⋆ ⋆ ⋆ −𝛽2 ℬ̂ ]
 
 
 
 

< 0, #(11)  

 

Where 

 

𝛶(𝜉(𝑡)) =  𝒫(𝜉(𝑡)) (𝒜 − ℱ(𝜉𝑎(𝑡))ℬ𝐾𝛬𝛾𝒞𝒢(𝜉𝑠(𝑡)))

 +(𝒜 − ℱ(𝜉𝑎(𝑡))ℬ𝐾𝛬𝛾𝒞𝒢(𝜉𝑠(𝑡)))∗𝒫(𝜉(𝑡)) + 𝛽1 𝒜̂ ,
#(12)  

 

and each moving agent's velocity law is provided by 

 

𝜉̇ (𝑡) = −𝜌𝑑 ⟨𝑄(𝑡),
𝜕𝒫(𝜉(𝑡))

𝜕𝑡
𝑄(𝑡)⟩ #(13)  

 

with 𝜌𝑑 > 0. 
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Proof: The following operator-dependent Lyapunov functional is used to establish the stability 

conditions. 

 

𝑉(𝑡) = ⟨𝑄(𝑡), 𝒫(𝜉(𝑡))𝑄(𝑡)⟩. #(14)  

 

The infinitesimal operator ℒ of 𝑉(𝑡) is determined as 

 

ℒ𝑉(𝑄(𝑡), 𝑡) = lim
𝛥→0+

1

𝛥
{𝔼{𝑉(𝑄(𝑡 + 𝛥), 𝑡 + 𝛥)|𝑄(𝑡)} − 𝑉(𝑄(𝑡), 𝑡)}. #(15)  

 

Along the trajectories of (8), the derivative of the Lyapunov functional 

 

ℒ𝑉(𝑡) = 𝔼⟨𝑥̇ (𝑡), 𝒫(𝜉(𝑡))𝑄(𝑡)⟩ + 𝔼⟨𝑄(𝑡), 𝒫(𝜉(𝑡)) 𝑥̇ (𝑡)⟩ + ⟨𝑄(𝑡),
𝑑𝒫(𝜉(𝑡))

𝑑𝑡
𝑄(𝑡)⟩ . #(16)  

 

Firstly, substituting (8) into the first and second term of (16), and considering 𝒜𝑐(𝜉(𝑡)) can be 

decompose as 𝒜𝑐(𝜉(𝑡)) = 𝒜(𝜉(𝑡)) + 𝛥𝒜(𝜉(𝑡)), where 𝒜(𝜉(𝑡)) = 𝒜 − ℱ(𝜉𝑎(𝑡))ℬ𝐾𝛬𝛾𝒞𝒢(𝜉𝑠(𝑡)) and 

𝛥𝒜(𝜉(𝑡)) = 𝛥𝒜 − ℱ(𝜉𝑎(𝑡))𝛥ℬ𝐾𝛬𝛾𝒞𝒢(𝜉𝑠(𝑡)). Utilizing the fact that the linear operator 𝒫(𝜉(𝑡)) is 

self-adjoint, and combining the admissible condition of parameter uncertainties and Lemma 1, we can 

deduce 

 

2𝔼⟨𝑄(𝑡), 𝒫(𝜉(𝑡)) 𝑄̇ (𝑡)⟩
= 2𝔼⟨𝑄(𝑡), 𝒫(𝜉(𝑡))𝒜𝑐(𝜉(𝑡))𝑄(𝑡)⟩

= 2⟨𝑄(𝑡), 𝒫(𝜉(𝑡))(𝒜(𝜉(𝑡)) + 𝛥𝒜(𝜉(𝑡)))𝑄(𝑡)⟩

≤ 2⟨𝑄(𝑡), 𝒫(𝜉(𝑡))𝒜(𝜉(𝑡))𝑄(𝑡)⟩ + 𝛽1
−1⟨𝑄(𝑡),𝒫(𝜉(𝑡))𝒫∗(𝜉(𝑡))𝑄(𝑡)⟩

+𝛽1⟨𝑄(𝑡), 𝒜̂ 𝑄(𝑡)⟩ + 𝛽2
−1⟨𝑄(𝑡), (𝒫(𝜉(𝑡))ℱ(𝜉𝑎(𝑡)))(𝒫(𝜉(𝑡))ℱ(𝜉𝑎(𝑡)))∗𝑄(𝑡)⟩

+𝛽2⟨𝑄(𝑡), (𝐾𝛬𝛾𝒞𝒢(𝜉𝑠(𝑡)))∗ ℬ̂ (𝐾𝛬𝛾𝒞𝒢(𝜉𝑠(𝑡)))𝑄(𝑡)⟩

= ⟨𝑄(𝑡),𝛹(𝜉(𝑡))𝑄(𝑡)⟩.

 

 

where 𝛹(𝜉(𝑡)) are defined as in (11). 

 

Next, the third term of (16) is 

 

⟨𝑄(𝑡),
𝑑𝒫(𝜉(𝑡))

𝑑𝑡
𝑄(𝑡)⟩ = ⟨𝑄(𝑡), 𝜉̇ (𝑡)

𝜕𝒫(𝜉(𝑡))

𝜕𝜉
𝑄(𝑡)⟩, 

 

and, for 𝜌𝑑 is any positive gain, which can be made negative by selecting 
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𝜉̇ (𝑡) = −𝜌𝑑⟨𝑄(𝑡),
𝜕𝒫(𝜉(𝑡))

𝜕𝜉
𝑄(𝑡)⟩. 

 

It follows from (11) -(13) that 

 

ℒ𝑉(𝑡) ≤ −𝑐 𝔼|𝑄(𝑡)|2, 𝑡 ≥ 0,                        (17) 

 

Therefore, we have 

 

𝔼𝑉(𝑡) − 𝑉(0) ≤ −𝑐 ∫ 𝔼
𝑡

0

|𝑄(𝑠)|2𝑑𝑠 

 

whereas the linear positive definite operator 𝒫(𝜉(𝑡)):𝒟(𝒜) → ℋ satisfy the inequality (10). Hence, it 

implies that 

 

∫ 𝔼
𝑡

0

|𝑄(𝑠)|2𝑑𝑠 ≤ 𝛼  ∥ 𝑄0 ∥2, 

 

where 𝛼 =
𝑏

𝑐
. Namely, 

 

∫ 𝔼
𝑡

0

|𝑄(𝑠)|2𝑑𝑠 ≤ 𝛼(|𝑄0|
2 + |𝒜𝑄0|

2) < +∞. 

 

Moreover, it is simple to confirm that 𝔼|𝑄(𝑡)|2 is uniformly continuous on [0, +∞). From Lemma 2, 

we can obtain 

 

lim
𝑡→+∞

𝔼|𝑄(𝑡)|2 = 0. 

 

Accordingly, the system (4) is globally asymptotically stable. 

 

Remark 1: It is worth mentioning that the system (4) also can be proved globally exponentially stable in the 

mean square. In this case, we choose the Lyapunov functional as 𝑉(𝑡) = 𝑒𝑟𝑡⟨𝑄(𝑡),𝒫(𝜉(𝑡))𝑄(𝑡)⟩, the 

similar results can be obtained easily, and the proof is omitted here. 

 

Theorem 1 presents an abstract stability framework on uncertain distributed parameter systems with 

multiple missing measurements. In the following, the general spatial distribution of moving sensors and 

actuators is considered under the proposed framework. Simultaneously, the velocity law of each moving 

actuator and sensor will be proposed for the stability conditions of such system and enhance the controller 

performance via choose the proper 𝒫(𝜉(𝑡)). 
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The spatial distribution of each mobile actuator which centroid at 𝜉𝑖
𝑎, given by 

 

𝑓𝑖(𝜉; 𝜉𝑖
𝑎) = {

𝑓𝑖(𝜉) if 𝜉 ∈ [𝜉𝑖
𝑎 − 𝜀𝑖

−, 𝜉𝑖
𝑎 + 𝜀𝑖

+]

 0   otherwise
, #(18)  

 

or depict 

 

𝑓𝑖(𝜉; 𝜉𝑖
𝑎) = 𝑓𝑖(𝜉)[𝐻(𝜉 − (𝜉𝑖

𝑎 − 𝜀𝑖
−)) − 𝐻(𝜉 − (𝜉𝑖

𝑎 + 𝜀𝑖
+))], #(19)  

 

what employs 2 different Heaviside functions. The spatial distribution is followed by each mobile sensor 

with its centroid at 𝜉𝑖
𝑠. 

 

𝑔𝑖(𝜉; 𝜉𝑖
𝑠) = {

𝑔𝑖(𝜉) if 𝜉 ∈ [𝜉𝑖
𝑠 − 𝜗𝑖

−, 𝜉𝑖
𝑠 + 𝜗𝑖

+]

 0   otherwise
, #(20)  

 

or depict 

 

𝑔𝑖(𝜉; 𝜉𝑖
𝑠) = 𝑔𝑖(𝜉)[𝐻(𝜉 − (𝜉𝑖

𝑠 − 𝜗𝑖
−)) − 𝐻(𝜉 − (𝜉𝑖

𝑠 + 𝜗𝑖
+))]. #(21)  

 

Remark 2: Here, two notes are given in follows. For one hand, two edges of each moving agent’s range is 

not symmetry, and more general than symmetrical one. For the other hand, each actuator and sensor may 

have different spatial distribution each other in a homogeneous network. Indeed, the distribution of each 

agent also can be piecewise smooth in local. For example, one actuator’s distribution in symmetric interval 

[𝜉𝑖
𝑎 − 𝜀, 𝜉𝑖

𝑎 + 𝜀] may be shown as 

 

𝑓𝑖(𝜉) = {

1

𝜀
 if 𝜉 ∈ [𝜉𝑖

𝑎 −
𝜀

3
, 𝜉𝑖

𝑎 +
𝜀

3
]

1

2𝜀
 if 𝜉 ∈ [𝜉𝑖

𝑎 − 𝜀, 𝜉𝑖
𝑎 −

𝜀

3
]⋃[𝜉𝑖

𝑎 +
𝜀

3
, 𝜉𝑖

𝑎 + 𝜀]

. 

 

Therefore, the more general distribution of each actuation-sensing device can given by 

 

𝑓𝑖(𝜉; 𝜉𝑖
𝑎) = ∑𝑓𝑖𝑗

𝑚

𝑗=1

(𝜉)[𝐻(𝜉 − (𝜉𝑖0
𝑎 + (𝑗 − 1)𝛥ℎ)) − 𝐻(𝜉 − (𝜉𝑖0

𝑎 + 𝑗𝛥ℎ))],

𝑔𝑖(𝜉; 𝜉𝑖
𝑠) = ∑ 𝑔𝑖𝑗

𝑚

𝑗=1

(𝜉)[𝐻(𝜉 − (𝜉𝑖0
𝑠 + (𝑗 − 1)𝛥ℎ)) − 𝐻(𝜉 − (𝜉𝑖0

𝑠 + 𝑗𝛥ℎ))],
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where 𝛥ℎ =
𝜀++𝜀−

𝑚
, 𝜉𝑖0

𝑎 = 𝜉𝑖
𝑎 − 𝜀− and 𝜉𝑖0

𝑠 = 𝜉𝑖
𝑠 − 𝜗−, 𝑗 = 1,2,⋯ ,𝑚. And 𝑓𝑖𝑗 and 𝑔𝑖𝑗 can have the 

same expression, also they can have the different one each other. 

 

Theorem 2 Under the decentralized output feedback control strategy (6), uncertain spatial diffusion 

processes with multiple packet losses (4) is robustly globally asymptotically stable in the mean square, if the 

spatial distribution of mobile actuators and sensors are given by (18) and (20) respectively and satisfy 

[𝜉𝑖
𝑎 − 𝜀𝑖

−, 𝜉𝑖
𝑎 + 𝜀𝑖

+]⋂[𝜉𝑖
𝑠 − 𝜗𝑖

−, 𝜉𝑖
𝑠 + 𝜗𝑖

+] ≠ ⌀, such that the following velocity law of each moving agent 

holds, 

 

𝜉̇
𝑖

𝑎
(𝑡) = −𝜌𝑖

𝑎𝑊𝑖
𝑎𝑏𝑖𝑘𝑖𝛾𝑖

𝑐𝑖                        (24)

𝜉̇
𝑖

𝑠
(𝑡) = −𝜌𝑖

𝑠𝑊𝑖
𝑠𝑏𝑖𝑘𝑖𝛾𝑖

𝑐𝑖                        (25)
 

 

with 𝜌𝑖
𝑎 > 0 and 𝜌𝑖

𝑠 > 0, 𝑖 = 1,2,⋯ , 𝑛, are velocity gain of each actuation-sensing device, where the 

expression of 𝑊𝑖
𝑎 and 𝑊𝑖

𝑠 are depend on the mobile actuators and sensors intersecting part of the spatial 

distribution of zone, also express as following: 

 

(i) [𝜉𝑖
𝑎 − 𝜀𝑖

−, 𝜉𝑖
𝑎 + 𝜀𝑖

+] ⊂ [𝜉𝑖
𝑠 − 𝜗𝑖

−, 𝜉𝑖
𝑠 + 𝜗𝑖

+] 

 

𝑊𝑖
𝑎 = ∫ 𝑓

𝜉𝑖
𝑎+𝜀𝑖

+

𝜉𝑖
𝑎−𝜀𝑖

−
′𝑖(𝜉)𝑔𝑖(𝜉)𝑥

2(𝑡, 𝜉)𝑑𝜉 + 𝑓𝑖(𝜉𝑖
𝑎 − 𝜀𝑖

− + 0)𝑔𝑖(𝜉𝑖
𝑎 − 𝜀𝑖

−)𝑥2(𝑡, 𝜉𝑖
𝑎 − 𝜀𝑖

−)

−𝑓𝑖(𝜉𝑖
𝑎 + 𝜀𝑖

+ − 0)𝑔𝑖(𝜉𝑖
𝑎 + 𝜀𝑖

+)𝑥2(𝑡, 𝜉𝑖
𝑎 + 𝜀𝑖

+),                           (26)

𝑊𝑖
𝑠 = ∫ 𝑔

𝜉𝑖
𝑎+𝜀𝑖

+

𝜉𝑖
𝑎−𝜀𝑖

−
′𝑖(𝜉)𝑓𝑖(𝜉)𝑥

2(𝑡, 𝜉)𝑑𝜉;                                       (27)

 

 

(ii) [𝜉𝑖
𝑠 − 𝜗𝑖

−, 𝜉𝑖
𝑠 + 𝜗𝑖

+] ⊂ [𝜉𝑖
𝑎 − 𝜀𝑖

−, 𝜉𝑖
𝑎 + 𝜀𝑖

+] 

 

𝑊𝑖
𝑎 = ∫ 𝑓

𝜉𝑖
𝑠+𝜗𝑖

+

𝜉𝑖
𝑠−𝜗𝑖

−
′𝑖(𝜉)𝑔𝑖(𝜉)𝑥

2(𝑡, 𝜉)𝑑𝜉,                                        (28)

𝑊𝑖
𝑠 = ∫ 𝑔

𝜉𝑖
𝑠+𝜗𝑖

+

𝜉𝑖
𝑠−𝜗𝑖

−
′𝑖(𝜉)𝑓𝑖(𝜉)𝑥

2(𝑡, 𝜉)𝑑𝜉 + 𝑔𝑖(𝜉𝑖
𝑠 − 𝜗𝑖

− + 0)𝑓𝑖(𝜉𝑖
𝑠 − 𝜗𝑖

−)𝑥2(𝑡, 𝜉𝑖
𝑠 − 𝜗𝑖

−)

−𝑔𝑖(𝜉𝑖
𝑠 + 𝜗𝑖

+ − 0)𝑓𝑖(𝜉𝑖
𝑠 + 𝜗𝑖

+)𝑥2(𝑡, 𝜉𝑖
𝑠 + 𝜗𝑖

+);                           (29)

 

 

(iii)[𝜉𝑖
𝑠 − 𝜗𝑖

−, 𝜉𝑖
𝑠 + 𝜗𝑖

+]⋂[𝜉𝑖
𝑎 − 𝜀𝑖

−, 𝜉𝑖
𝑎 + 𝜀𝑖

+] = [𝜉𝑖
𝑎 − 𝜀𝑖

−, 𝜉𝑖
𝑠 + 𝜗𝑖

+] 
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𝑊𝑖
𝑎 = ∫ 𝑓

𝜉𝑖
𝑠+𝜗𝑖

+

𝜉𝑖
𝑎−𝜀𝑖

−
′𝑖(𝜉)𝑔𝑖(𝜉)𝑥

2(𝑡, 𝜉)𝑑𝜉 + 𝑓𝑖(𝜉𝑖
𝑎 − 𝜀𝑖

− + 0)𝑔𝑖(𝜉𝑖
𝑎 − 𝜀𝑖

−)𝑥2(𝑡, 𝜉𝑖
𝑎 − 𝜀𝑖

−),   (30)

𝑊𝑖
𝑠 = ∫ 𝑔

𝜉𝑖
𝑠+𝜗𝑖

+

𝜉𝑖
𝑎−𝜀𝑖

−
′𝑖(𝜉)𝑓𝑖(𝜉)𝑥

2(𝑡, 𝜉)𝑑𝜉 − 𝑔𝑖(𝜉𝑖
𝑠 + 𝜗𝑖

+ − 0)𝑓𝑖(𝜉𝑖
𝑠 + 𝜗𝑖

+)𝑥2(𝑡, 𝜉𝑖
𝑠 + 𝜗𝑖

+);  (31)

 

 

(iv)[𝜉𝑖
𝑎 − 𝜀𝑖

−, 𝜉𝑖
𝑎 + 𝜀𝑖

+]⋂[𝜉𝑖
𝑠 − 𝜗𝑖

−, 𝜉𝑖
𝑠 + 𝜗𝑖

+] = [𝜉𝑖
𝑠 − 𝜗𝑖

−, 𝜉𝑖
𝑎 + 𝜀𝑖

+] 

 

𝑊𝑖
𝑎 = ∫ 𝑓

𝜉𝑖
𝑎+𝜀𝑖

+

𝜉𝑖
𝑠−𝜗𝑖

−
′𝑖(𝜉)𝑔𝑖(𝜉)𝑥

2(𝑡, 𝜉)𝑑𝜉 − 𝑓𝑖(𝜉𝑖
𝑎 + 𝜀𝑖

+ − 0)𝑔𝑖(𝜉𝑖
𝑎 + 𝜀𝑖

+)𝑥2(𝑡, 𝜉𝑖
𝑎 + 𝜀𝑖

+),   (32)

𝑊𝑖
𝑠 = ∫ 𝑔

𝜉𝑖
𝑎+𝜀𝑖

+

𝜉𝑖
𝑠−𝜗𝑖

−
′𝑖(𝜉)𝑓𝑖(𝜉)𝑥

2(𝑡, 𝜉)𝑑𝜉 + 𝑔𝑖(𝜉𝑖
𝑠 − 𝜗𝑖

− + 0)𝑓𝑖(𝜉𝑖
𝑠 − 𝜗𝑖

−)𝑥2(𝑡, 𝜉𝑖
𝑠 − 𝜗𝑖

−).   (33)

 

 

Proof: Consider the following Lyapunov functional, which is operator-dependent. 

 

𝑉(𝑡) = −⟨𝑄(𝑡),𝒜(𝜉(𝑡))𝑄(𝑡)⟩, #(34)  

 

where the boundedness and nonnegative definite of the operator −𝒜(𝜉(𝑡)) easily see from the discussion 

above. 

 

The infinitesimal operator ℒ𝑉 along (34) is given by 

 

ℒ𝑉 = −𝔼⟨𝑄̇ (𝑡),𝒜(𝜉(𝑡))𝑄(𝑡)⟩ − 𝔼⟨𝑄(𝑡),𝒜(𝜉(𝑡)) 𝑄̇ (𝑡)⟩ − ⟨𝑄(𝑡),
𝑑𝒜(𝜉(𝑡))

𝑑𝑡
𝑄(𝑡)⟩ . #(35)  

 

By using the properties of the operators −𝒜(𝜉(𝑡)) and −𝒜𝑐(𝜉(𝑡)), the following results deduced 

easily. 

 

−𝔼⟨𝑄̇ (𝑡),𝒜(𝜉(𝑡))𝑄(𝑡)⟩ − 𝔼⟨𝑄(𝑡),𝒜(𝜉(𝑡)) 𝑄̇ (𝑡)⟩ ≤ 0. #(36)  

 

Then, the third one of (35) has 
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− ⟨𝑄(𝑡),
𝑑𝒜(𝜉(𝑡))

𝑑𝑡
𝑄(𝑡)⟩

= ⟨𝑄(𝑡),
𝑑

𝑑𝑡
(ℱ(𝜉𝑎(𝑡))ℬ𝐾𝛬𝛾𝒞𝒢(𝜉𝑠(𝑡)))𝑄(𝑡)⟩

= ⟨𝑄(𝑡), 𝜉̇
𝑎
(𝑡)

𝜕ℱ(𝜉𝑎(𝑡))

𝜕𝜉
ℬ𝐾𝛬𝛾𝒞𝒢(𝜉𝑠(𝑡))𝑄(𝑡)⟩

+ ⟨𝑄(𝑡), ℱ(𝜉𝑎(𝑡))ℬ𝐾𝛬𝛾𝒞 𝜉̇
𝑠
(𝑡)

𝜕𝒢(𝜉𝑠(𝑡))

𝜕𝜉
𝑄(𝑡)⟩

#(37)  

 

There are two parts to the formula (37) proposed here: one is used to determine the velocity of 𝑖th 

moving actuating device; and the other is employed to determine the velocity of 𝑖th moving sensing device. 

 

The first term in (37) can be written in terms of the integral representation, that is, 

 

⟨𝑄(𝑡), 𝜉̇
𝑎
(𝑡)

𝜕ℱ(𝜉𝑎(𝑡))

𝜕𝜉
ℬ𝐾𝛬𝛾𝒞𝒢(𝜉𝑠(𝑡))𝑄(𝑡)⟩

= ∫ 𝜉̇
𝑎

𝑙

0

(𝑡)
𝜕𝑓(𝜉; 𝜉𝑎)

𝜕𝜉
𝑄2(𝑡, 𝜉)ℬ𝐾𝛬𝛾𝒞𝑔(𝜉; 𝜉𝑠)𝑑𝜉

= ∑𝜉̇
𝑖

𝑎
𝑛

𝑖=1

(𝑡)∫
𝜕

𝜕𝜉

𝑙

0

[𝑓𝑖(𝜉)(𝐻(𝜉 − (𝜉𝑖
𝑎 − 𝜀𝑖

−)) − 𝐻(𝜉 − (𝜉𝑖
𝑎 + 𝜀𝑖

+)))]𝑄2(𝑡, 𝜉)

  × [𝑔𝑖(𝜉)(𝐻(𝜉 − (𝜉𝑖
𝑠 − 𝜗𝑖

−)) − 𝐻(𝜉 − (𝜉𝑖
𝑠 + 𝜗𝑖

+)))]𝑑𝜉𝑏𝑖𝑘𝑖𝛾𝑖
𝑐𝑖

= ∑𝜉̇
𝑖

𝑎
𝑛

𝑖=1

(𝑡)∫ [
𝜉𝑖

𝑠+𝜗𝑖
+

𝜉𝑖
𝑠−𝜗𝑖

−
𝑓′𝑖(𝜉)(𝐻(𝜉 − (𝜉𝑖

𝑎 − 𝜀𝑖
−)) − 𝐻(𝜉 − (𝜉𝑖

𝑎 + 𝜀𝑖
+)))

  +𝑓𝑖(𝜉𝑖
𝑎 − 𝜀𝑖

− + 0)𝛿(𝜉 − (𝜉𝑖
𝑎 − 𝜀𝑖

−))

−𝑓𝑖(𝜉𝑖
𝑎 + 𝜀𝑖

+ − 0)𝛿(𝜉 − (𝜉𝑖
𝑎 + 𝜀𝑖

+))]𝑄2(𝑡, 𝜉)𝑔𝑖(𝜉)𝑑𝜉𝑏𝑖𝑘𝑖𝛾𝑖
𝑐𝑖

 

 

For presentation convenience, we denote 

 

𝑊𝑖
𝑎 = ∫ [

𝜉𝑖
𝑠+𝜗𝑖

+

𝜉𝑖
𝑠−𝜗𝑖

−
𝑓′𝑖(𝜉)(𝐻(𝜉 − (𝜉𝑖

𝑎 − 𝜀𝑖
−)) − 𝐻(𝜉 − (𝜉𝑖

𝑎 + 𝜀𝑖
+))) + 𝑓𝑖(𝜉𝑖

𝑎 − 𝜀𝑖
− + 0)𝛿(𝜉 − (𝜉𝑖

𝑎 − 𝜀𝑖
−))

−𝑓𝑖(𝜉𝑖
𝑎 + 𝜀𝑖

+ − 0)𝛿(𝜉 − (𝜉𝑖
𝑎 + 𝜀𝑖

+))]𝑄2(𝑡, 𝜉)𝑔𝑖(𝜉)𝑑𝜉.

 

 

And, for 𝜌𝑖
𝑎 is any positive gain, it can be made negative by the selecting 

 

𝜉̇
𝑖

𝑎
(𝑡) = −𝜌𝑖

𝑎𝑊𝑖
𝑎𝑏𝑖𝑘𝑖𝛾𝑖

𝑐𝑖, 
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where the expression of 𝑊𝑖
𝑎 can be calculated as the form of (26) in [𝜉𝑖

𝑎 − 𝜀𝑖
−, 𝜉𝑖

𝑎 + 𝜀𝑖
+], (28) in 

[𝜉𝑖
𝑠 − 𝜗𝑖

−, 𝜉𝑖
𝑠 + 𝜗𝑖

+], (30) in [𝜉𝑖
𝑎 − 𝜀𝑖

−, 𝜉𝑖
𝑠 + 𝜗𝑖

+] and (32) in [𝜉𝑖
𝑠 − 𝜗𝑖

−, 𝜉𝑖
𝑎 + 𝜀𝑖

+]. 

 

The second term in (37) is calculated as follows 

 

⟨𝑄(𝑡), ℱ(𝜉𝑎(𝑡))ℬ𝐾𝛬𝛾𝒞 𝜉̇
𝑠
(𝑡)

𝜕𝒢(𝜉𝑠(𝑡))

𝜕𝜉
𝑄(𝑡)⟩

= ∫ 𝑓
𝑙

0

(𝜉; 𝜉𝑎)ℬ𝐾𝛬𝛾𝒞 𝜉̇
𝑠
(𝑡)

𝜕𝑔(𝜉; 𝜉𝑠)

𝜕𝜉
𝑄2(𝑡, 𝜉)𝑑𝜉

= ∑𝜉̇
𝑖

𝑠
𝑛

𝑖=1

(𝑡)∫
𝜕

𝜕𝜉

𝑙

0

[𝑔𝑖(𝜉)(𝐻(𝜉 − (𝜉𝑖
𝑠 − 𝜗𝑖

−)) − 𝐻(𝜉 − (𝜉𝑖
𝑠 + 𝜗𝑖

+)))]𝑄2(𝑡, 𝜉)

  × [𝑓𝑖(𝜉)(𝐻(𝜉 − (𝜉𝑖
𝑎 − 𝜀𝑖

−)) − 𝐻(𝜉 − (𝜉𝑖
𝑎 + 𝜀𝑖

+)))]𝑑𝜉𝑏𝑖𝑘𝑖𝛾𝑖
𝑐𝑖

= ∑𝜉̇
𝑖

𝑠
𝑛

𝑖=1

(𝑡)∫ [
𝜉𝑖

𝑎+𝜀𝑖
+

𝜉𝑖
𝑎−𝜀𝑖

−
𝑔′𝑖(𝜉)(𝐻(𝜉 − (𝜉𝑖

𝑠 − 𝜗𝑖
−)) − 𝐻(𝜉 − (𝜉𝑖

𝑠 + 𝜗𝑖
+)))

  +𝑔𝑖(𝜉𝑖
𝑠 − 𝜗𝑖

− + 0)𝛿(𝜉 − (𝜉𝑖
𝑠 − 𝜗𝑖

−))

−𝑔𝑖(𝜉𝑖
𝑠 + 𝜗𝑖

+ − 0)𝛿(𝜉 − (𝜉𝑖
𝑠 + 𝜗𝑖

+))]𝑄2(𝑡, 𝜉)𝑓𝑖(𝜉)𝑑𝜉𝑏𝑖𝑘𝑖𝛾𝑖
𝑐𝑖

 

 

We denote 

 

𝑊𝑖
𝑠 = ∫ [

𝜉𝑖
𝑎+𝜀𝑖

+

𝜉𝑖
𝑎−𝜀𝑖

−
𝑔′𝑖(𝜉) (𝐻(𝜉 − (𝜉𝑖

𝑠 − 𝜗𝑖
−)) − 𝐻(𝜉 − (𝜉𝑖

𝑠 + 𝜗𝑖
+))) + 𝑔𝑖(𝜉𝑖

𝑠 − 𝜗𝑖
− + 0)𝛿(𝜉 − (𝜉𝑖

𝑠 − 𝜗𝑖
−))

−𝑔𝑖(𝜉𝑖
𝑠 + 𝜗𝑖

+ − 0)𝛿(𝜉 − (𝜉𝑖
𝑠 + 𝜗𝑖

+))]𝑄2(𝑡, 𝜉)𝑓𝑖(𝜉)𝑑𝜉.

#(39) 

 

Then, choose 

 

𝜉̇
𝑖

𝑠
(𝑡) = −𝜌𝑖

𝑠𝑊𝑖
𝑠𝑏𝑖𝑘𝑖𝛾𝑖

𝑐𝑖, 

 

for 𝜌𝑖
𝑠 is any positive gain. 𝑊𝑖

𝑠 can be calculated as the expression of (27) in [𝜉𝑖
𝑎 − 𝜀𝑖

−, 𝜉𝑖
𝑎 + 𝜀𝑖

+], (29) in 

[𝜉𝑖
𝑠 − 𝜗𝑖

−, 𝜉𝑖
𝑠 + 𝜗𝑖

+], (31) in [𝜉𝑖
𝑎 − 𝜀𝑖

−, 𝜉𝑖
𝑠 + 𝜗𝑖

+] and (33) in [𝜉𝑖
𝑠 − 𝜗𝑖

−, 𝜉𝑖
𝑎 + 𝜀𝑖

+]. 

 

From the above discussion, we have ℒ𝑉(𝑡) ≤ −𝑐1 𝔼|𝑄(𝑡)|2, 𝑡 ≥ 0, whereas the linear positive definite 

and bounded operator −𝒜(𝜉(𝑡)) on 𝒟(𝒜) satisfy the following inequality: 

 

𝑐1⟨𝑄(𝑡), 𝑄(𝑡)⟩ ≤ ⟨𝑄(𝑡), −𝒜(𝜉(𝑡))𝑄(𝑡)⟩ ≤ 𝑏1 [⟨𝑄(𝑡), 𝑄(𝑡)⟩ + ⟨𝒜𝑄(𝑡),𝒜𝑄(𝑡)⟩], #(40)  

 

for 𝑏1 > 0 and 𝑐1 > 0. We can deduce that there exists 𝛼1 > 0 such that 
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∫ 𝔼
𝑡

0

|𝑄(𝑠)|2𝑑𝑠 ≤ 𝛼1(|𝑄0|
2 + |𝒜𝑄0|

2), 

 

in the similar way that Theorem 1 was proved. 

 

From Lemma 2, it implies that 

 

lim
𝑡→+∞

𝔼|𝑄(𝑡)|2 = 0. 

 

Therefore, the system (4) is globally asymptotically stable if the velocity law of each moving 

actuation-sensing device is given in (24) and (25), when their spatial distribution is (18) and (20) 

respectively. 

 

IV. DISCUSSION 

 

The system (4) with spatial distribution of each moving agent is rather general. Specially, consider the 

scenario when there are no uncertainties, in which case system (4) may be altered to the following model. 

 

𝜕𝑄(𝑡, 𝜉)

𝜕𝑡
=

𝜕

𝜕𝜉
(𝛼(𝜉)

𝜕𝑄(𝑡, 𝜉)

𝜕𝜉
) − 𝑎𝑄(𝑡, 𝜉) + ∑𝑓

𝑛

𝑖=1

(𝜉; 𝜉𝑖
𝑎(𝑡))𝑏𝑖𝑢𝑖(𝑡), 

 

𝑦(𝑡) = [

𝑦1(𝑡)

𝑦2(𝑡)
  ⋮
𝑦𝑛(𝑡)

] =

[
 
 
 
 
 
 
 ∫ 𝛾1

𝑙

0

𝑔(𝜉; 𝜉1
𝑠(𝑡))𝑐1𝑄(𝑡, 𝜉)𝑑𝜉

∫ 𝛾2

𝑙

0

𝑔(𝜉; 𝜉2
𝑠(𝑡))𝑐2𝑄(𝑡, 𝜉)𝑑𝜉

     ⋮

∫ 𝛾𝑛

𝑙

0

𝑔(𝜉; 𝜉𝑛
𝑠(𝑡))𝑐𝑛𝑄(𝑡, 𝜉)𝑑𝜉

]
 
 
 
 
 
 
 

. #(41)  

 

where the spatial distribution of each moving actuator which centroid at 𝜉𝑖
𝑎, given by 

 

𝑓(𝜉; 𝜉𝑖
𝑎) = {

𝑓(𝜉) if 𝜉 ∈ [𝜉𝑖
𝑎 − 𝜀−, 𝜉𝑖

𝑎 + 𝜀+]

 0   otherwise
#(42)  

 

Each moving sensor which centroid at 𝜉𝑖
𝑠 follow the spatial distribution as 

 

𝑔(𝜉; 𝜉𝑖
𝑠) = {

𝑔(𝜉) if 𝜉 ∈ [𝜉𝑖
𝑠 − 𝜀−, 𝜉𝑖

𝑠 + 𝜀+]

 0   otherwise
#(43)  
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Remark 3: The spatial distribution of each mobile agent discussed in (42) and (43), implies that the mobile 

actuator and sensor networks is homogeneous. In such network, every actuator and sensor is identical to 

each other, only different at the location of their centroids 𝜉𝑖
𝑎  and 𝜉𝑖

𝑠 . That is 𝑓𝑖(𝜉) = 𝑓(𝜉; 𝜉𝑖
𝑎) and 

𝑔𝑖(𝜉) = 𝑔(𝜉; 𝜉𝑖
𝑠), 𝑖 = 1,2,⋯ , 𝑛. 

 

Corollary 1 Under the decentralized output feedback control strategy (6), spatial diffusion processes 

with multiple packet losses (4) is globally asymptotically stable in the mean square, if the spatial 

distribution of mobile actuators and sensors are given by (42) and (43) respectively and satisfy [𝜉𝑖
𝑎 −

𝜀−, 𝜉𝑖
𝑎 + 𝜀+] = [𝜉𝑖

𝑠 − 𝜗−, 𝜉𝑖
𝑠 + 𝜗+], such that the following velocity law of each moving agent holds, 

 

𝜉̇
𝑖

𝑎
(𝑡) = −𝜌𝑖

𝑎𝑏𝑖𝑘𝑖𝛾𝑖
𝑐𝑖[∫ 𝑓

𝜉𝑖
𝑠+𝜗+

𝜉𝑖
𝑠−𝜗−

′(𝜉)𝑔(𝜉)𝑄2(𝑡, 𝜉)𝑑𝜉

+𝑓(𝜉𝑖
𝑎 − 𝜀− + 0)𝑔(𝜉𝑖

𝑎 − 𝜀−)𝑄2(𝑡, 𝜉𝑖
𝑎 − 𝜀−)

−𝑓(𝜉𝑖
𝑎 + 𝜀+ − 0)𝑔(𝜉𝑖

𝑎 + 𝜀+)𝑄2(𝑡, 𝜉𝑖
𝑎 + 𝜀+)],        (44)

𝜉̇
𝑖

𝑠
(𝑡) = −𝜌𝑖

𝑠𝑏𝑖𝑘𝑖𝛾𝑖
𝑐𝑖[∫ 𝑔

𝜉𝑖
𝑎+𝜀+

𝜉𝑖
𝑎−𝜀−

′(𝜉)𝑓(𝜉)𝑄2(𝑡, 𝜉)𝑑𝜉

+𝑔(𝜉𝑖
𝑠 − 𝜗− + 0)𝑓(𝜉𝑖

𝑠 − 𝜗−)𝑄2(𝑡, 𝜉𝑖
𝑠 − 𝜗−)

−𝑔(𝜉𝑖
𝑠 + 𝜗+ − 0)𝑓(𝜉𝑖

𝑠 + 𝜗+)𝑄2(𝑡, 𝜉𝑖
𝑠 + 𝜗+)],        (45)

 

 

with 𝜌𝑖
𝑎 > 0 and 𝜌𝑖

𝑠 > 0, 𝑖 = 1,2,⋯ , 𝑛, are velocity gain of each actuation-sensing device. 

Moreover, the system (41) can be further refined to 

 

𝜕𝑄(𝑡, 𝜉)

𝜕𝑡
=

𝜕

𝜕𝜉
(𝛼(𝜉)

𝜕𝑄(𝑡, 𝜉)

𝜕𝜉
) + ∑𝑓

𝑛

𝑖=1

(𝜉; 𝜉𝑖
𝑎(𝑡))𝑢𝑖(𝑡), 

 

𝑦(𝑡) = [

𝑦1(𝑡)

𝑦2(𝑡)
  ⋮
𝑦𝑛(𝑡)

] =

[
 
 
 
 
 
 
 ∫ 𝑔

𝑙

0

(𝜉; 𝜉1
𝑠(𝑡))𝑄(𝑡, 𝜉)𝑑𝜉

∫ 𝑔
𝑙

0

(𝜉; 𝜉2
𝑠(𝑡))𝑄(𝑡, 𝜉)𝑑𝜉

     ⋮

∫ 𝑔
𝑙

0

(𝜉; 𝜉𝑛
𝑠(𝑡))𝑄(𝑡, 𝜉)𝑑𝜉

]
 
 
 
 
 
 
 

. #(46)  

 

Here, we can assume that the spatial distribution of moving actuators and sensors in the network are 

collocated, which means that 𝜉𝑖
𝑎(𝑡) = 𝜉𝑖

𝑠(𝑡) with 𝑓(𝜉; 𝜉𝑖
𝑎) = 𝑔(𝜉; 𝜉𝑖

𝑠), 𝑖 = 1,2,⋯ , 𝑛 . Then, the spatial 

distribution of each agent is given by 
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𝑓(𝜉; 𝜉𝑖
𝑎) = {

𝑓(𝜉) if 𝜉 ∈ [𝜉𝑖
𝑎 − 𝜀, 𝜉𝑖

𝑎 + 𝜀]

 0   otherwise
#(47)  

 

and we have the following corollary directly. 

 

Corollary 2 Under the decentralized output feedback control strategy (6), spatial diffusion processes 

(46) is globally asymptotically stable, if mobile actuators and sensors are collocated, which spatial 

distribution is given by (47), such that the following velocity law of each moving agent holds, 

 

𝜉̇
𝑖

𝑎
(𝑡) = 𝜉̇

𝑖

𝑠
(𝑡)

= −𝜌𝑖𝑘𝑖[∫ 𝑓
𝜉𝑖

𝑎+𝜀

𝜉𝑖
𝑎−𝜀

′(𝜉)𝑓(𝜉)𝑄2(𝑡, 𝜉)𝑑𝜉 + 𝑓2(𝜉𝑖
𝑎 − 𝜀)𝑄2(𝑡, 𝜉𝑖

𝑎 − 𝜀)

−𝑓2(𝜉𝑖
𝑎 + 𝜀)𝑄2(𝑡, 𝜉𝑖

𝑎 + 𝜀)]

#(48)  

 

with 𝜌𝑖 > 0, 𝑖 = 1,2,⋯ , 𝑛, is velocity gain of each actuation-sensing device. 

 

Remark 4: Each sensing device is believed to be able to obtain state measurement information from two 

edges of the sensor's range in this study. In that case, average value of measurement from each of moving 

sensor can be indicated in the following: 

 

𝑦𝑖(𝑡) = ∫ 𝑓
𝑙

0

(𝜉; 𝜉𝑖
𝑠(𝑡))𝑄(𝑡, 𝜉)𝑑𝜉

= ∫ 𝑓
𝜉𝑖

𝑎+𝜀

𝜉𝑖
𝑎−𝜀

(𝜉)𝑄(𝑡, 𝜉)𝑑𝜉

≈ 𝜀[𝑓(𝜉𝑖
𝑎 − 𝜀)𝑄(𝑡, 𝜉𝑖

𝑎 − 𝜀) + 𝑓(𝜉𝑖
𝑎 + 𝜀)𝑄(𝑡, 𝜉𝑖

𝑎 + 𝜀)].

#(49)  

 

Then (48) also can be indicated as following 

 

𝜉̇
𝑖

𝑎
(𝑡) = 𝜉̇

𝑖

𝑠
(𝑡)

= −𝜌𝑖𝑘𝑖[∫ 𝑓
𝜉𝑖

𝑎+𝜀

𝜉𝑖
𝑎−𝜀

′

(𝜉)𝑓(𝜉)𝑄2(𝑡, 𝜉)𝑑𝜉 + 𝑓(𝜉𝑖
𝑎 − 𝜀)𝑄(𝑡, 𝜉𝑖

𝑎 − 𝜀)     (50)

−𝑓(𝜉𝑖
𝑎 + 𝜀)𝑄(𝑡, 𝜉𝑖

𝑎 + 𝜀)]𝑦𝑖(𝑡).

 

 

Further, if 𝑓(𝜉) = 𝜇 in (47), the spatial distribution of mobile agent can be simplified as 

 

𝑓(𝜉; 𝜉𝑖
𝑎) = {

𝜇 if 𝜉 ∈ [𝜉𝑖
𝑎 − 𝜀, 𝜉𝑖

𝑎 + 𝜀]

0  otherwise
. #(51)  
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Then we can easily deduce the following corollary. 

 

Corollary 3 Under the decentralized output feedback control strategy (6), spatial diffusion processes 

(46) is globally asymptotically stable, if mobile actuators and sensors are collocated, which spatial 

distribution is given by (51), such that the following velocity law of each moving agent holds, 

 

𝜉̇
𝑖

𝑎
(𝑡) = 𝜉̇

𝑖

𝑠
(𝑡) = −𝜌𝑖𝑘𝑖𝜇

2(𝑄2(𝑡, 𝜉𝑖
𝑎 − 𝜀) − 𝑄2(𝑡, 𝜉𝑖

𝑎 + 𝜀))#(52)  

 

Or 

 

𝜉̇
𝑖

𝑎
(𝑡) = 𝜉̇

𝑖

𝑠
(𝑡) = −𝜌𝑖𝑘𝑖𝜇[(𝑄(𝑡, 𝜉𝑖

𝑎 − 𝜀) − 𝑄(𝑡, 𝜉𝑖
𝑎 + 𝜀))]𝑦𝑖(𝑡)#(53)  

 

with 𝜌𝑖 > 0, 𝑖 = 1,2,⋯ , 𝑛, is velocity gain of each actuation-sensing device. 

 

V. NUMERICAL RESULTS 

 

In this section, we'll use a simulation to demonstrate the utility of our main conclusions.  Consider a 

forest belt with three mobile actuation-sensing devices in 𝛺 = [0,1]. 

 

𝜕𝑄(𝑡, 𝜉)

𝜕𝑡
= 𝛼0

𝜕2𝑄(𝑡, 𝜉)

𝜕𝜉2
− (0.6 + 𝛥𝑎)𝑄(𝑡, 𝜉)

+[1.3 + 𝛥𝑏1 1.25 + 𝛥𝑏2 1.35 + 𝛥𝑏3] [

𝑓(𝜉; 𝜉1
𝑎(𝑡))𝑢1(𝑡)

𝑓(𝜉; 𝜉2
𝑎(𝑡))𝑢2(𝑡)

𝑓(𝜉; 𝜉3
𝑎(𝑡))𝑢3(𝑡)

] ,

𝑦(𝑡) = [

𝑦1(𝑡)

𝑦2(𝑡)

𝑦3(𝑡)
] =

[
 
 
 
 
 
 ∫ 1.3

1

0

𝛾
1
𝑔(𝜉; 𝜉1

𝑠(𝑡))𝑄(𝑡, 𝜉)𝑑𝜉

∫ 1.15
1

0

𝛾
2
𝑔(𝜉; 𝜉2

𝑠(𝑡))𝑄(𝑡, 𝜉)𝑑𝜉

∫ 1.2
1

0

𝛾
3
𝑔(𝜉; 𝜉3

𝑠(𝑡))𝑄(𝑡, 𝜉)𝑑𝜉
]
 
 
 
 
 
 

,

#(54)  

 

where the initial condition 𝑥(0, 𝜉) = sin(𝜋𝜉)𝑒−8𝜉2
 and initial boundary condition 𝑄(𝑡, 0) = 𝑄(𝑡, 1) = 0. 

The diffusion operator is 𝛼0 = 0.006. The probabilities are taken as 𝛾
1

= 0.9, 𝛾
2

= 0.8 and 𝛾
3

= 0.85. 

The spatial distribution of each moving actuator which centroid at 𝜉𝑖
𝑎, given by 

 

𝑓(𝜉; 𝜉𝑖
𝑎) = {

1 if 𝜉 ∈ [𝜉𝑖
𝑎 − 𝜀−, 𝜉𝑖

𝑎 + 𝜀+]

0 otherwise
.                  (55) 

 

Each moving sensor which centroid at 𝜉𝑖
𝑠 follow the spatial distribution as 
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𝑔(𝜉; 𝜉𝑖
𝑠) = {

1

√2𝜋𝜎
𝑒

−
(𝜉−𝜉𝑖

𝑠)2

2𝜎2  if 𝜉 ∈ [𝜉𝑖
𝑠 − 𝜗−, 𝜉𝑖

𝑠 + 𝜗+]

  0      otherwise

.       (56) 

 

Utilizing the following decentralized static output feedback control strategy 

 

𝑢(𝑡) = [

𝑢1(𝑡)

𝑢2(𝑡)

𝑢3(𝑡)
] = − [

𝑘1 0 0
0 𝑘2 0
0 0 𝑘3

] [

𝑦1(𝑡)

𝑦2(𝑡)

𝑦3(𝑡)
] , #(57)  

 

where 𝑘1 = 5, 𝑘2 = 8 and 𝑘3 = 10. In the time [0,20], the closed-loop system is simulated. 

 

From Theorem 2, it is easy to verify under the decentralized static output feedback control scheme (6), 

the diffusion process (54) is globally asymptotically stable in the mean square, if the spatial distribution of 

moving actuators and sensors are presented by (55) and (56) respectively and satisfy [𝜉𝑖
𝑎 − 𝜀, 𝜉𝑖

𝑎 + 𝜀] =

[𝜉𝑖
𝑠 − 𝜗, 𝜉𝑖

𝑠 + 𝜗], such that the following velocity law of each moving agent holds, 

 

𝜉̇
𝑖

𝑎
(𝑡) = −

1

√2𝜋𝜎
𝜌𝑖

𝑎𝑏𝑖𝑘𝑖𝛾𝑖
𝑐𝑖[𝑒

−
(𝜉𝑖

𝑎−𝜀−−𝜉𝑖
𝑠)2

2𝜎2 𝑄2(𝑡, 𝜉𝑖
𝑎 − 𝜀−)

−𝑒
−

(𝜉𝑖
𝑎+𝜀+−𝜉𝑖

𝑠)2

2𝜎2 𝑄2(𝑡, 𝜉𝑖
𝑎 + 𝜀+)],                       (58)

𝜉̇
𝑖

𝑠
(𝑡) =

1

√2𝜋𝜎
𝜌𝑖

𝑠𝑏𝑖𝑘𝑖𝛾𝑖
𝑐𝑖[∫

𝜉 − 𝜉𝑖
𝑠

𝜎2

𝜉𝑖
𝑎+𝜀+

𝜉𝑖
𝑎−𝜀−

𝑒
−

(𝜉−𝜉𝑖
𝑠)2

2𝜎2 𝑥2(𝑡, 𝜉)𝑑𝜉

−𝑒
−

(𝜉𝑖
𝑠−𝜗−−𝜉𝑖

𝑠)2

2𝜎2 𝑄2(𝑡, 𝜉𝑖
𝑠 − 𝜗−)

+𝑒
−

(𝜗+)2

2𝜎2 𝑄2(𝑡, 𝜉𝑖
𝑠 + 𝜗+)],                            (59)

 

 

with 𝜌𝑖
𝑎 > 0 and 𝜌𝑖

𝑠 > 0, 𝑖 = 1,2,3 are velocity gain of each actuation-sensing device. 

 

As a comparison, we take into account three fixed-in-space sensors which fixed at 𝜉1
𝑠 = 0.25, 𝜉2

𝑠 =

0.55 and 𝜉3
𝑠 = 0.85 and three actuators which fixed at 𝜉1

𝑎 = 0.26, 𝜉2
𝑎 = 0.56 and 𝜉3

𝑎 = 0.86. Figure 1 

depicts the state L2 norm for a closed loop system and the case of mobile networks in the simulation. Figure 

2 describes the state distribution of static and mobile networks at four different time instants. The trajectory 

of three actuators and sensors for the fixed and mobile cases is depicted in Figure 3. 
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Fig 1: Evolution of spatial L2 norm 

 

 
 

Fig 2: Comparison of closed loop state and spatial variable at different times 
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Fig 3: The trajectory of actuation-sensing devices 

 

 

III. CONCLUSION 

 

This present work has addressed a mobile sensing approach to the optimal monitoring and robust 

control problem in arrays of forest fire processes in uncertain environments. An optimized framework is 

given for measurement and control of forest fires using mobile actuator-sensor networks with multiple 

packet losses. By referring to Lyapunov stability argument, the decentralized output feedback controller 

is designed to achieve robust stability in the mean square of the addressed systems. Also, the LOIs-based 

conditions and velocity law of mobile actuation-sensing devices are given. The obtained results improve 

and extend the earlier works. To exemplify the effectiveness of the presented theoretical conclusions, a 

numerical example has been provided. 
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