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Abstract: 

In order to study the synchronous evolution of social networks and the process of reaching 

consensus, the coupled time-delay complex network model is improved. Aiming at the 

problem of constant coupling delay in the original model, a random coupling delay rule is 

proposed to adjust the network evolution rate. Aiming at the same importance of nodes in the 

original model, the multi-attribute decision method is introduced to change the importance of 

nodes and optimize the efficiency of network synchronization. Based on Lyapunov stability 

theory and matrix theory, the conditions for social networks to achieve cluster 

synchronization are deduced. Finally, the evolution experiment is carried out with Twitter 

social network data set, which verifies the theoretical feasibility and effectiveness. 

Keywords: Complex network theory, Social networks, Cluster synchronization. 

 

I. INTRODUCTION 

 

With the comprehensive promotion and application of Internet technology, online social media tools 

such as online forums, Facebook, Twitter, and WeChat have become important communication channels 

for netizens to express opinions, share emotions, spread and obtain information. In addition, with the rapid 

growth of netizens, information dissemination on the Internet has an increasing influence on product 

promotion, brand building, social emergency evolution, and public emotions and attitudes. People will 

encounter all kinds of information in social networks. Due to the different social experience, education 

level and social status of users, they often have different understandings and opinions on the same 

information. In fact, the dissemination of information on the Internet is usually accompanied by the 

dissemination of online public opinion. It is essentially a synchronous phenomenon of typical social 

collective behavior, which means that many people have reached a consensus in certain aspects, leading to 

a certain social event. In other words, synchronization is a metaphor for the phenomenon that many people 

take the same view or take action at the same time. Social network user opinion dynamics, that is, the 

process of opinion evolution is a type of problem in the study of complex network dynamics. To study 
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consensus issues from the perspective of social network user viewpoint dynamics, that is, how to reach 

consensus among users in the dynamic process, study the generation of user viewpoints or behaviors in 

social networks, the mutual influence between users, and the dissemination of viewpoints through the 

network, And finally reached a consensus on the views from different users. This paper uses a complex 

network synchronization model to study the consensus process of social networks. The synchronization 

research of social networks can not only provide a scientific theoretical basis for large-scale Internet 

incidents, but also provide reasonable preventive measures and strategies before and after the incident. 

Therefore, this is an important subject worthy of study. 

 

Ⅱ. RESEARCH STATUS 

 

At present, the research on synchronization types of complex networks mainly includes: complete 

synchronization[2],exponential synchronization[3],cluster synchronization[4] and projection 

synchronization[5]. In most cases, unless some controllers are added, the network will not synchronize 

autonomously. In order to realize the synchronization dynamics of complex networks, many control 

strategies are proposed, such as adaptive control[6], sampled data control[7], pulse control[8], intermittent 

control[9] and many other effective control methods. The research related to this paper at home and abroad 

generally includes the following two aspects: 

 

2.1Research on Cluster Synchronization 

 

In [10], the author studied the adaptive cluster synchronization of directed networks and gave the 

minimum number of pinned nodes. Moreover, when the root nodes in all clusters are pinned, the cluster 

synchronization with adaptive coupling strength can be realized. In [11], the author studied the clustering 

synchronization of the network through the methods of local control and local adaptive coupling strength, 

in which the coupling strength of each node is adaptively adjusted only according to the state information 

of its neighbor nodes, and the sufficient conditions for realizing clustering synchronization are obtained. In 

[12] and [13], Su et al. Used a relatively novel decentralized adaptive pinning control method to study the 

cluster synchronization of linear coupled networks and the cluster synchronization of networks with 

multiple agents and oscillators. In [14], the author designed a linear feedback controller to eliminate the 

interaction between clusters to realize the cluster synchronization of complex networks with non identical 

nodes. In [15], the author discusses the clustering synchronization of a class of directed networks by using 

intermittent pinning control. In [16], the author discusses the cluster synchronization problem of complex 

networks with linear coupling by using a pinning control method. The dynamic behavior of each node in 

the network is the same, and then obtains the sufficient conditions for complex networks to achieve cluster 

synchronization. 

 

2.2 Research on Network Synchronization with Time Delay 

 

Time delay is a common social phenomenon in nature and human society. It is usually caused by 

limited signal transmission and memory effect. Time delay also exists in the node characteristics of 

complex networks and network topology. In recent years, there have been many research results on the 
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time-delay effect in network topology and its dynamic behavior [17-29]. In [17], the author studied the 

fixed time synchronization problem of complex networks with multiple weights and coupling delays based 

on aperiodic intermittent control. By constructing a complex network model with multiple weights, and 

based on the fixed time stability lemma and matrix theory, the sufficient conditions for realizing the fixed 

time synchronization of complex networks are given. In [18], the author studies the adaptive finite time 

clustering synchronization problem of a class of complex dynamic networks coupled by non constant and 

discontinuous Lur'e systems, designs an effective pinning feedback controller, and obtains the 

synchronization conditions of adaptive finite time clustering synchronization. In [19], the author 

establishes a fractional order complex network model with coupling time delay and model parameter 

uncertainty, and gives the delay projection synchronization error model of driving network and response 

network. Secondly, an effective controller and parameter adaptive law are designed to realize the delay 

projection synchronization and parameter identification between the two networks. In [20], the author 

considers the time-varying delay and network uncertainty in the complex network model, and studies the 

exponential synchronization problem under the condition that the dynamic changes of nodes and the 

coupling between nodes are nonlinear. In [21], the global synchronization of a class of complex dynamic 

networks with time-delay and non time-delay coupling terms is studied based on adaptive control 

technology; In [22] studies the exponential synchronization of time-delay coupled dynamic networks and 

the influence of time delay. In [23], a suitable state feedback controller is designed for a class of complex 

networks with mixed time delays, and a sufficient condition to ensure the finite time H∞ synchronization 

of the system is obtained. In [24] Studies exponential synchronization of complex networks with 

time-delay in general topology, considering both directed and undirected network models respectively; In 

[25] discusses the exponential synchronization of dynamic complex networks with time-delay and non 

time-delay coupling terms; In [26] studies a class of complex network models with directional topology 

and time delay. In [27] studies the exponential synchronization problem of a class of mixed coupling 

complex dynamic networks with variable time delay. By designing an appropriate intermittent feedback 

controller, a new synchronization criterion is given; Based on Lyapunov function method and Razumikhin 

technology, In [28] studies the exponential synchronization problem of complex networks with variable 

delay. 

 

At present, the research on synchronization and control of complex time-delay dynamic network has 

attracted wide attention of many scientists at home and abroad, but most scholars have studied the 

complete synchronization and exponential synchronization of the network, and the group synchronization 

of complex time-delay dynamic network Less research. 

 

Ⅲ. SYNCHRONIZATION MODEL AND IMPROVEMENT OF COUPLED TIME-DELAY 

COMPLEX NETWORKS 

 

3.1 Coupling time-delay complex network synchronization model 

 

The typical synchronization model of coupled time-delay complex networks can be described as: when 

all nodes in the system have the same dynamics, the network synchronization is realized by mutual 

time-delay coupling between nodes and the action of external controller. The specific formula is as 
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follows: 

 

𝑥
•

𝑖(𝑡) = 𝑓(𝑥𝑖(𝑡)) + 𝑐∑𝑎𝑖𝑗𝑥𝑗(𝑡 − 𝜏) + 𝜇𝑖(𝑡)     

𝑁

𝑗=1

𝑖 = 1,2,⋯ ,𝑁       (1) 

 

Where𝑥𝑖(𝑡) = [𝑥𝑖1, 𝑥𝑖2, ⋯ 𝑥𝑖𝑁]
𝑇 ∈ 𝑅𝑁represents the state variable of the i-th node in the complex 

network,; the function 𝑓: 𝑅𝑛 → 𝑅𝑛 describes the dynamic equation of each node; 𝜏 is the coupling delay 

between nodes; c is the coupling strength; the asymmetric matrix 𝐴 = (𝑎𝑖𝑗)𝑁×𝑁 is used to describe the 

network Coupling matrix, 𝑎𝑖𝑗 is defined as follows: if there is a connection between node i and node 

j,𝑎𝑖𝑗 = −𝑎𝑗𝑖 = 1, otherwise 𝑎𝑖𝑗 = 𝑎𝑗𝑖 = 0; 𝑢𝑖(𝑡) is the external controller, 𝑢𝑖(𝑡) = −𝑑𝑖𝑒𝑖(𝑡). 𝑑𝑖 where 

is the control intensity. 

 

In the network (1), when 𝑡 → ∞, 𝑥1(𝑡) = 𝑥2(𝑡) = ⋯ = 𝑥𝑁(𝑡) = 𝑠(𝑡) can also be expressed as 

𝑙𝑖𝑚
𝑡→∞

‖𝑥𝑖(𝑡) − 𝑥𝑗(𝑡)‖ = 0, 𝑖, 𝑗 = 1,2, …𝑁, which means that the network is fully synchronized. Where s(t) is 

the solution of a single isolated node. 

 

However, the model believes that the coupling delay and coupling strength between all nodes are the 

same, which does not conform to the characteristics of real social interaction. In real social networks, due 

to the different life behaviors of users, the time lag in the process of network communication is different; 

in social networks, the importance of users is not the same, and the impact on other users is also different. 

The following will optimize and improve the network model based on the appeal question. 

 

3.2 Coupling delay optimization based on random function 

 

From the coupling time delay setting rules of the coupled time delay complex network model, it can be 

known that the model considers the coupling time delay between all individuals to be the same constant. 

However, in the real social network, the coupling time delay of each individual interacting is uncertain, so 

the typical coupled time delay complex network model has insufficient research on the synchronous 

evolution process of social networks. 

 

In fact, in clusters of real social networks, individuals often have different time lags in their 

interactions in social networks according to their own living habits or emergencies. Only when all 

individuals in the entire social network have the same living habits and no emergencies occur, the most 

perfect ideal situation occurs, each individual in the social network can be generated according to the rules 

in the typical coupled time-lag complex network model The same time lag, but this situation is too 

idealistic and unrealistic, and cannot accurately represent the diversity of individuals in social networks. 

 

In order to explore the time lag in the interaction process of each user in the real social network, a 

small-scale social survey was conducted. The survey results are shown in Table Ⅰ and Table Ⅱ: 
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Table Ⅰ. Causes of time lag and the number of people 

 

Reasons for interaction 

delay 

No interaction delay Work study sports other 

Number of people 15 9 15 9 18 

 

Table Ⅱ. Specific time lag and number of people 

 

Time delay(minutes) 0-5 5-10 10-15 15-20 20 and above 

Number of people 18 15 6 12 9 

 

From the results of the survey, everyone in the real network will have some special reasons to cause 

some delays in social network interactions, and the length of the delays varies due to different reasons. The 

generation of this delay is often uncertain and cannot be described correctly. Based on the above analysis, 

this paper proposes a stochastic strategy to represent the coupling time delay between individuals in a 

complex network. The coupling time delay between individuals in the interaction should be completely 

randomly generated, so this paper adopts a random coupling time delay generation strategy, in which the 

coupling time delay generated by each node is different, and the strategy obeys the standard uniform 

distribution,𝜏𝑖~𝑈(0, 1), 𝑖 ∈ 𝑁. 

 

In order to study the synchronization process between the complex network model with random 

coupling delay and the complex network model with constant coupling delay, the following small example 

analysis is made. 

 

Taking a directed network model composed of ten nodes as an example, its topology is shown in 

Figure 1: 

 

 
Fig 1: directed network composed of 10 nodes 

 

In this analysis, the complex network is described by equation (1), where C = 1, and the dynamic 
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system of the node is described by Lorenz system, 𝑓(𝑥𝑖(𝑡)) =

{
 

 
10(𝑥2 − 𝑥1)

28𝑥1 − 𝑥2 − 𝑥1𝑥3

𝑥1𝑥2 −
8𝑥3

3⁄
. 

 

In order to verify the influence of the fixed coupling delay 𝜏 and the randomly generated coupling 

delay 𝜏𝑖 on the convergence of the complex network synchronization model with the fixed coupling delay 

𝜏 = 1 and the random coupling delay 𝜏𝑖 = {0, 0.2, 0.8, 0.8, 0.5, 0.2, 0.9, 0.4, 0.1, 0.7}, different coupling 

delay strategies simulation experiment was carried out under. The result of constant delay synchronization 

is shown in Figure 2, and the result of random delay synchronization is shown in Figure 3: 

 

 
Fig 2: Time change diagram of synchronization error under constant coupling time delay   𝜏 = 1 

 
Fig 3: Time variation diagram of synchronization error under random coupling time delay 𝜏𝑖 

 

Comparing Figure 2 and Figure 3, from the perspective of synchronization time, at t=1.5, the 

synchronization error components of all nodes in the random coupled time-delay network model are equal 

to 0, and the nodes reach a fully synchronized state; while the fixed coupled time-delay network In the 

model, it can be clearly seen that the various stability error components of each node are not equal, and the 

node has not yet reached the synchronization state. From the perspective of synchronization accuracy, 

from t=1.5 to t=3, all synchronization error components of all nodes in the random coupling time-delay 

network model are stable at 0; The synchronization error of the node in the fixed coupled time-delay model 

is still in a fluctuating state during the time period, and its state change is not stable. 
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The experimental results show that the convergence time of the stochastically coupled time-delay 

synchronization model is lower than that of the constant-coupled time-delay synchronization model, that 

is, under the same conditions, compared with the constant coupling time-delay synchronization model, the 

convergence is higher, which means that the optimized synchronization model has Conducive to promote 

system synchronization. 

3.3 Coupling strength optimization based on node importance 

 

From the setting rules of the coupling strength of the coupled time-delay complex network model, it 

can be known that the model believes that the coupling strength between all individuals is the same during 

the evolution of the system. In fact, the non homogeneity of social network topology determines the 

importance of nodes in complex networks. Individuals with high importance in social networks will have 

greater influence on other individuals, so the coupling strength of each node should be unequal. Therefore, 

this paper considers the influence of node importance on the coupling strength between individuals. 

 

There are many angles to evaluate the importance of nodes in complex networks, such as degree 

centrality, intermediate centrality, proximity centrality, eigenvector and so on. There are some limitations 

in using single methods to evaluate the importance of nodes in the network. In the complex network of the 

real world, it is difficult to use a single index to measure the importance of nodes in the network. The 

importance of nodes in the network is related to the overall structure of the network. It is necessary to use 

multiple importance indexes of nodes for comprehensive evaluation. Therefore, this paper uses 

multi-attribute decision-making method to evaluate the importance of nodes in complex networks. This 

article intends to evaluate the importance of network nodes from the following three aspects, First, in terms 

of the degree value (D) of the node, the more user interactions in social networks and the higher the 

activity, the greater the importance of the node, 𝐷𝑖 = ∑ 𝑎𝑖𝑗
𝑁
𝑗=1 ; second, the clustering coefficient (C) of the 

node, in The aggregation coefficient in social networks is the degree of interconnection between a user and 

nearby users. The higher the degree of connection, the greater the importance of the node. Assuming that 

node i is directly connected to v nodes, the aggregation coefficient of node i is 𝐶𝑖 = 𝑀𝑖/[𝑣(𝑣 − 1)]; Third, 

in terms of node betweenness (B), in social networks, some nodes may have a relatively small degree, but 

it may be an intermediate contact between the two groups. If the node is deleted, it will result in two The 

connection of the group is interrupted, so the node plays an important role in the network. Therefore, the 

index is measured by betweenness. It is defined as:𝐵𝑖 = ∑ [𝑛𝑗𝑙(𝑖)/𝑛𝑗𝑙]𝑖≤𝑗<𝑙≤𝑁,𝑗≠𝑖≠𝑙 , where 𝑛𝑗𝑙  is the 

number of shortest paths between nodes j and l; 𝑛𝑗𝑙(𝑖) is the number of shortest paths between nodes j 

and l through node i, and N is the total number of nodes in the network. The higher the value of the node 

betweenness, the greater the influence of the node, and the more important the corresponding status. 

However, the greater the maximum betweenness of the node in network synchronization, the weaker the 

synchronization ability of the network. 

 

Constructing a decision matrix: If there are L nodes in each subgroup of the social network, the 

corresponding decision plan set can be expressed as 𝐺 = {𝐺1, 𝐺2, ⋯𝐺𝐿}, because there are 3 indicators for 

evaluating the importance of each node, the corresponding plan attribute set is 𝐼 = {𝐼1, 𝐼2, 𝐼3},The j-th 
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index of the i-th node is 𝐺𝑖(𝐼𝑗), (𝑖 = 1,2,⋯ , 𝐿; 𝑗 = 1,2,3)to form the decision matrix J. Where 𝐼1, 𝐼2, 𝐼3 is 

the degree of nodes, the agglomeration coefficient of nodes and the intermediate number of nodes 

respectively. 

 

Decision matrix standardization: Because this method has more indicators, all indicators are divided 

into positive indicators (the higher the indicator, the stronger the ability) and the reverse indicator (the 

higher the indicator, the weaker the ability). 

 

{
 
 

 
 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠: 𝑟𝑖𝑗 =

𝐺𝑖(𝐼𝑗)

𝐺𝑖(𝐼𝑗)
𝑚𝑎𝑥⁄

𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠: 𝑟𝑖𝑗 =
𝐺𝑖(𝐼𝑗)

𝑚𝑖𝑛

𝐺𝑖(𝐼𝑗)
⁄

          (2) 

{
𝐺𝑖(𝐼𝑗)

𝑚𝑎𝑥
= 𝑚𝑎𝑥{𝐺𝑖(𝐼𝑗)|1 ≤ 𝑖 ≤ 𝐿}

𝐺𝑖(𝐼𝑗)
𝑚𝑖𝑛

= 𝑚𝑖𝑛{𝐺𝑖(𝐼𝑗)|1 ≤ 𝑖 ≤ 𝐿}
                        (3) 

 

The standardized decision matrix is recorded as: 𝑅(𝑟𝑖𝑗)𝐿×3 

 

Determine the positive ideal plan 𝐴+and the negative ideal plan 𝐴−according to the matrix R, where 

 

    
     )4(

,,,,min

,,,,max

min

3

min

2

min

1321

max

3

max

2

max

1321




















iiiiii
Li

iiiiii
Li

rrrrrrA

rrrrrrA

 
 

Calculate the distance from each scheme to the positive ideal scheme and the negative ideal scheme 

according to formula (5). 

 

{
 
 
 

 
 
 

𝐷𝑖
+ = [∑(𝑟𝑖𝑗 − 𝑟𝑗

𝑚𝑎𝑥)
2

3

𝑗=1

]

1
2

𝐷𝑖
− = [∑(𝑟𝑖𝑗 − 𝑟𝑗

𝑚𝑖𝑛)
2

3

𝑗=1

]

1
2

            (5) 

 

Finally, the importance is sorted according to the paste progress Z of the ideal scheme, where 

𝑍𝑖 =
𝐷𝑖
−

𝐷𝑖
+ + 𝐷𝑖

−⁄ . 

 

Finally, through the importance of individuals, the following formula is proposed to express the 
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coupling strength of interaction between individuals: 𝑐𝑖 = √𝑍𝑖/𝑁. 

 

Take kite network as an example: 

 

10

123

5

4

8

7

9

6

 
Figure 4: Kite network topology 

 

 

The importance of nodes in the network is comprehensively calculated based on the three indexes of 

degree value, clustering coefficient and betweenness. Among them, degree value and clustering coefficient 

are positive indicators, and betweenness is a reverse indicator. The calculated results of each indicator are 

shown in Table Ⅲ. Secondly, compare the synchronicity of the coupled time-delay complex network 

model with the constant coupling strength and the optimized coupling strength: 

 

Table Ⅲ. The calculation results of each index of the nodes in the kite network 

 

node Degree value Agglomeration coefficient betweenness
 

1 1 0 0 

2 2 0 16 

3 3 1/3 28 

4 5 1/2 16.67 

5 5 1/2 16.67 

6 3 1 0 

7 6 8/15 7.33 

8 3 1 0 

9 4 2/3 1.67 

10 4 2/3 1.67 

 

From Table 3, it can be obtained that 𝐴+ = {6,1,28} , 𝐴− = {1,0,0} . The multi-attribute 

decision-making evaluation results of the kite network nodes are calculated as shown in Table Ⅳ. 

 

Table Ⅳ. Multi-attribute decision-making evaluation results of kite network 

 

node
 

𝑫𝒊
+ 𝑫𝒊

− 𝒁𝒊 
1 28.3 0 0 
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2 12.4 16.03 13.4 

3 2.1 28.07 3.1 

4 11.34 17.15 12.3 

5 11.34 17.15 12.3 

6 28.07 2.23 29 

7 20.7 8.89 30.1 

8 28.07 2.23 29 

9 26.35 3.5 27.4 

10 26.35 3.5 27.4 

 

The node importance 𝑍𝑖 of the kite network is obtained from Table 4, and the coupling strength of 

each node in the network is calculated by the node importance 

𝑐𝑖 = {0, 0.36, 0.17, 0.35, 0.35, 0.53, 0.55, 0.53, 0.52, 0.52}. After the constant coupling strength c=1 and 

the multi-attribute decision-making method are optimized, the coupling strength of the node is analyzed. 

The synchronization capability of the complex network model under different coupling strengths is 

analyzed. The coupling delay τ = 1 , the dynamic equation  of the node is 

𝑓(𝑥𝑖(𝑡)) = {
36𝑥2 − 36𝑥1 + 144

20𝑥1 − 𝑥1𝑥3 + 2𝑥1 + 8𝑥3 − 64
𝑥1𝑥2 − 3𝑥3 − 4𝑥1 − 8𝑥2 − 26

. The results are shown in Figure 5 and Figure 6. 

 
Fig. 5: Time variation diagram of the synchronization error of the kite network under constant coupling 

strength 
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Fig. 6 :Time variation diagram of the synchronization error of the kite network under variable coupling 

strength 

 

From Figure 5 and Figure 6, we can conclude that at the synchronization rate, at t=3, the 

synchronization error components e1 and e2 of the nodes in the fixed coupling strength network model 

tend to stabilize. The synchronization error component e3 of the node is still undergoing synchronization 

convergence at t=8, and has not reached a stable state; while the node synchronization error components e1 

and e2 in the network model under variable coupling strength reach a stable state at t=2. The 

synchronization error component e3 of the node has reached an asymptotically stable state at t=3. In terms 

of synchronization accuracy, although the synchronization error components e1 and e2 of the nodes in 

Figure 5 tend to be stable, they are not completely stable at 0. The synchronization error components e1 

and e2 of the nodes in Figure 6 not only tend to stabilize, but also stabilize at At the value of 0; the 

synchronization error component e3 of the nodes in Figure 5 and Figure 6 at t=8, the node convergence 

strength of the variable coupling strength network model is significantly higher than that of the constant 

coupling strength network model, so its synchronization accuracy is also higher than that of the constant 

coupling strength model. 

 

The analysis results show that the coupling strength of the network nodes is optimized by the 

multi-attribute decision-making method. The optimized network synchronization rate and synchronization 

accuracy are significantly improved in a certain range compared with the network model under the fixed 

coupling strength. Therefore, based on the node importance The optimized coupling strength can better 

promote the synchronization of the network. 

 

Ⅳ. CLUSTER SYNCHRONIZATION ANALYSIS OF COUPLED TIME-DELAY NETWORKS 

BASED ON FEEDBACK CONTROL 

 

There are three main analysis methods for the synchronization capability of complex networks, 

namely, the main stable function method, the connection graph method and the Lyapunov function 

method. In this paper, the Lyapunov function method is used to analyze the group synchronization of 
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social networks, and the Lyapunov function method is used to analyze the local stability or global stability 

of the system from the energy point of view. This method first constructs an energy function similar to 

measuring the evolution of the system, and checks whether it decays monotonously over time to judge the 

stability of the system. This method has universal applicability, can be used in any system, and is widely 

used in stability analysis and synchronization control analysis of complex networks. 

 

Due to the massive nature of social network users, countless groups gathered for different reasons are 

formed in the network, and users in these different groups have different dynamic behaviors due to their 

self-similarity. Different groups have different opinions on the same event. This feature is consistent with 

cluster synchronization in the network synchronization model. 

 

The definition of cluster synchronization is as follows. If node i belongs to the k-th cluster, then define 

𝜔𝑖 = 𝐶𝑘. Then when the complex network realizes group synchronization, for any node i and j: 

 

{
𝑙𝑖𝑚
𝑡→∞

‖𝑥𝑖(𝑡) − 𝑥𝑗(𝑡)‖ = 0,𝜔𝑖 = 𝜔𝑗

𝑙𝑖𝑚
𝑡→∞

‖𝑥𝑖(𝑡) − 𝑥𝑗(𝑡)‖ ≠ 0,𝜔𝑖 ≠ 𝜔𝑗
     (6) 

 

𝑒𝑖(𝑡) = 𝑥𝑖(𝑡) − 𝑠𝑘(𝑡), 𝑖 = 1,2,⋯ , 𝑁. 𝑘 = 1,2,⋯ ,𝑚 is the error vector between the state variable of 

the i-th node and the target state variable. Among them, the target state 𝑠𝑘(𝑡) satisfies 𝑠𝑘
•
(𝑡) = 𝑓(𝑠𝑘(𝑡)). 

If the complex network satisfies the following conditions, the complex network realizes group 

synchronization: 

 

{
𝑙𝑖𝑚
𝑡→∞

‖𝑒𝑖(𝑡)‖ = 0,𝜔𝑖 = 𝜔𝑗

𝑙𝑖𝑚
𝑡→∞

‖𝑒𝑖(𝑡)‖ ≠ 0,𝜔𝑖 ≠ 𝜔𝑗
         (7) 

 

Therefore, the error system of the network system (1) is: 

 

𝑒
•

𝑖(𝑡) = 𝑓(𝑥𝑖(𝑡)) − 𝑓(𝑠(𝑡)) + 𝑐∑𝑎𝑖𝑗𝐻𝑥𝑗(𝑡 − 𝜏)

𝑁

𝑗=1

− 𝑑𝑖𝑒𝑖(𝑡)         𝑖 = 1,2,⋯ ,𝑁      (8) 

 

In order to prove that the optimized network model can achieve cluster synchronization and cluster 

synchronization, the following assumptions and lemmas are proposed: 

 

Assumption 1: For any 𝑥, 𝑦 ∈ 𝑅𝑛, there is a constant 𝜃 > 0, so that the function 𝑓(•) satisfies:(𝑥 −

𝑦)𝑇(𝑓(𝑥) − 𝑓(𝑦)) ≤ 𝜃(𝑥 − 𝑦)𝑇(𝑥 − 𝑦)    (9) 

 

Lemma 1: Linear Matrix Inequality (LMI):(
𝑠11 𝑠12
𝑠12
𝑇 𝑠22

) < 0,Where 𝑠11 = 𝑠11
𝑇 , 𝑠22 = 𝑠22

𝑇  is equivalent 

to 𝑠22 < 0, 𝑠11 − 𝑠12𝑠22
−1𝑠12

𝑇 < 0. 
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Condition 1: Under the condition that hypothesis 1 and the following formula are satisfied, the network 

model realizes cluster synchronization. 

 

𝛩 − 𝐷 + 𝐼𝑁 +
𝐶2

4
𝐴𝐴𝑇 < 0       (10) 

 

Where 𝛩 = 𝑑𝑖𝑎𝑔{𝜃𝑖; 𝑖 ∈ 𝑁}, 𝐷 = 𝑑𝑖𝑎𝑔{𝑑𝑖; 𝑖 ∈ 𝑁}. 

 

Proof: Construct the following Lyapunov function: 

𝑉(𝑡) =
1

2
∑𝑒𝑖

𝑇(𝑡)𝑒𝑖(𝑡)

𝑁

𝑖=1

+∑∫
𝑡

𝑡 − 𝜏
𝑒𝑖
𝑇(𝑠)𝑒𝑖(𝑠)𝑑𝑠

𝑁

𝑖=1

 

 

 

Derivative for it: 

 

�̇�(𝑡) =∑𝑒𝑖
𝑇(𝑡)�̇�𝑖(𝑡)

𝑁

𝑖=1

+∑𝑒𝑖
𝑇(𝑡)𝑒𝑖(𝑡)

𝑁

𝑖=1

−∑𝑒𝑖
𝑇(𝑡 − 𝜏)𝑒𝑖(𝑡 − 𝜏)

𝑁

𝑖=1

 

=∑𝑒𝑖
𝑇(𝑡) [(𝑓𝑘(𝑥𝑖(𝑡)) − 𝑓𝑘(𝑠(𝑡)) + 𝑐𝑖𝑗 ∑ 𝑎𝑖𝑗𝑒𝑗(𝑡 − 𝜏)

𝑁

𝑗=1,𝑗≠𝑖

− 𝑑𝑖𝑒𝑖(𝑡)]

𝑁

𝑖=1

 

+∑𝑒𝑖
𝑇(𝑡)𝑒𝑖(𝑡)

𝑁

𝑖=1

−∑𝑒𝑖
𝑇(𝑡 − 𝜏)𝑒𝑖(𝑡 − 𝜏)

𝑁

𝑖=1

 

 

According to Hypothesis 1: 

 

�̇�𝑖(𝑡) ≤∑𝑒𝑖
𝑇(𝑡) [𝜃𝑒𝑖(𝑡) + 𝑐𝑖𝑗 ∑ 𝑎𝑖𝑗𝑒𝑗(𝑡 − 𝜏)

𝑁

𝑗=1,𝑗≠𝑖

− 𝑑𝑖(𝑠𝑖(𝑡) − 𝑥𝑖(𝑡)) + 𝑒𝑖(𝑡)]

𝑁

𝑖=1

−∑𝑒𝑖
𝑇(𝑡 − 𝜏)𝑒𝑖(𝑡 − 𝜏)

𝑁

𝑖=1

 

 

Where 𝑒(𝑡) = (𝑒1
𝑇(𝑡), 𝑒2

𝑇(𝑡),⋯ , 𝑒𝑁
𝑇(𝑡))𝑇,Through the Kronecker product, �̇�(𝑡)can be written as 

�̇�(𝑡) ≤ 𝑒𝑇(𝑡)(𝛩 − 𝐷 + 𝐼𝑁)𝑒(𝑡) + 𝑒
𝑇(𝑡)𝐶𝐴𝑒(𝑡 − 𝜏) − 𝑒𝑇(𝑡 − 𝜏)𝐼𝑁𝑒(𝑡 − 𝜏) 

≤ (𝑒(𝑡), 𝑒(𝑡 − 𝜏))𝑇 ×

[
 
 
 𝛩 − 𝐷 + 𝐼𝑁

𝐶

2
𝐴

(
𝐶

2
𝐴)

𝑇

−𝐼𝑁]
 
 
 

× (𝑒(𝑡), 𝑒(𝑡 − 𝜏)) 

 

Obviously 𝛩 − 𝐷 + 𝐼𝑁 and −𝐼𝑁 are symmetrical, −𝐼𝑁 < 0, according to condition 1, we can get 
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(𝛩 − 𝐷 + 𝐼𝑁) − (
𝐶

2
𝐴) × (−𝐼𝑁)

-1 (
𝐶

2
𝐴)

𝑇

 

= (𝛩 − 𝐷 + 𝐼𝑁) +
𝐶2

4
𝐴𝐼𝑁𝐴

𝑇 

= 𝛩 − 𝐷 + 𝐼𝑁 +
𝐶2

4
𝐴𝐴𝑇 < 0 

 

The inequality [
𝛩 − 𝐷 + 𝐼𝑁

𝐶

2
𝐴

(
𝐶

2
𝐴)

𝑇

−𝐼𝑁
] < 0 satisfies lemma 2, so �̇�(𝑡) < 0 , so 𝑒1(𝑡), 𝑒2(𝑡),⋯ 𝑒𝑁(𝑡) 

satisfies lim𝑡→∞ 𝑒𝑖(𝑡) = 0, 𝑖 = 1,2,⋯ , 𝑁 ,so the clustering synchronization of the optimized network 

model is realized, and the proof is given. 

 

Ⅴ. EMPIRICAL ANALYSIS 

 

In this section, an empirical simulation of real social networks will be used to prove the effectiveness 

of the clustering synchronization theorem obtained in Section 4. 

5.1 Data set introduction and data processing 

 

The empirical data of this paper adopts the real network data set of Stanford University - twitter social 

network data set. Because the social data of twitter social network is too large, this paper intercepts the 

communication data between 50 users for simulation experiments, and discards 7 isolated nodes. The 

network consists of 43 points and 233 edges. Without losing generality, the 43 users are divided into two 

groups, in which different groups express their dynamic equations with different functions, in which the 

number of group 1 nodes is 22 and the number of group 2 nodes is 21.The network topology is shown in 

Figure 7: 

 
Figure 7: Topological structure diagram of social network 

 

5.2 Analysis of experimental results 
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In this simulation, this complex network is described by the following formula: 

 

𝑥
•

𝑖(𝑡) = 𝑓(𝑥𝑖(𝑡)) + 𝑐𝑖∑𝑎𝑖𝑗𝐻𝑥𝑗(𝑡 − 𝜏𝑖)

𝑁

𝑗=1

+ 𝜇𝑖(𝑡)       𝑖 = 1,2,⋯ ,𝑁      (11) 

 

The nodal dynamic equations in different groups are as follows: 

 

𝑓1(𝑥𝑖(𝑡)) = {
36(𝑥2 − 𝑥1) + 144

20𝑥1 − 𝑥1𝑥3 + 2𝑥1 + 8𝑥3 − 64
𝑥1𝑥2 − 3𝑥3 − 4𝑥1 − 8𝑥2 − 26

                   𝑓2(𝑥𝑖(𝑡)) = {

10𝑥2 − 10𝑥1
28𝑥1 − 𝑥1𝑥3 − 𝑥2
𝑥1𝑥2 − 8/3𝑥3

 

If 𝜃1 = 5, 𝜃2 = 9, 𝑓1(𝑥𝑖(𝑡)) and 𝑓2(𝑥𝑖(𝑡))satisfy formula 9. 

(𝑥𝑖 − 𝑠1)
𝑇(𝑓1(𝑥𝑖) − 𝑓1(𝑠1)) ≤ 5(𝑒11

2 + 𝑒12
2 + 𝑒13

2 ) 

(𝑥𝑖 − 𝑠2)
𝑇(𝑓2(𝑥𝑖) − 𝑓2(𝑠2)) ≤ 9(𝑒21

2 + 𝑒22
2 + 𝑒23

2 ) 

 

Therefore, 𝛩 = 𝑑𝑖𝑎𝑔 {θi = 5, θj = 9|i ∈ {1,⋯22}, j ∈ {23,⋯ ,43}} , 𝑑𝑖 = 9, 𝑖 ∈ 𝑁 , the network 

satisfies the group synchronization condition 1, and the initial value of the state vector of 𝛩 − 𝐷 + 𝐼𝑁 +
𝐶2

4
𝐴𝐴𝑇 < 0.The network node is randomly selected from (0~10), and the synchronization ability of the 

original network model and the optimized and improved network model is performed Analysis, the 

simulation results are shown in Figure 8. 

 

 
      (a)Original network model           (b)Improved network model 

 

Figure 8 :The trajectory diagram of the state vector 𝑥𝑖1(𝑡) of the social network 

 

Figure 8 shows the trajectories of nodes XI between different clusters. The results show that regardless 

of the initial value, the trajectories of nodes in the same cluster will be close to the same, achieving 

synchronization between clusters. However, the trajectories of nodes in different clusters are very 

different, so different clusters The nodes between the nodes are not synchronized, so the network achieves 

group synchronization. It can be clearly seen from the above figure that the synchronization accuracy of 

nodes in the improved network model is higher than that of the original network model; comparing (a) and 

(b), it is not difficult to see that the nodes in the original network model group 1 are in Synchronization is 
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achieved at t=1.5. Compared with the improved network model, the state of the group 1 node reaches the 

synchronization state at time 0.5, and it stabilizes at time t=1.5. Therefore, the improved network model 

has better synchronization capabilities than the original network model. 

From the perspective of social network, at first, each individual user in the social network had different 

views on an event, influenced each other in the process of interaction with other users, and adjusted the 

user's own views on the event under this influence, resulting in a collective behavior, which gathered the 

user groups with similar social characteristics in the whole social network, And the group reached an 

agreement on an event, realizing the consensus among network groups. Because of the mass of social 

network users, under the influence of practical factors such as users' social experience, educational level 

and social status, the groups formed among users will also have different views on an event. Therefore, the 

consensus phenomenon in social networks conforms to cluster synchronization. 

 

In order to verify the influence of the controller on the group synchronization, the following is the 

synchronization evolution diagram of the social network when 𝑑𝑖 = 10、20、30, and the result is shown 

in Figure 9. 

 

(𝑎)𝑑𝑖 = 10                          (𝑏)𝑑𝑖 = 20 

 

               (𝑐)𝑑𝑖 = 30 
 

Fig. 9 trajectory diagram of state vector 𝑥𝑖1(𝑡) of social network under different control intensities 

 

As shown in the figure, under different control intensities, the fluctuation range between the state 

vectors of the social network decreases with the continuous increase of control intensity; while the state of 

the nodes reaches the time for inter-group synchronization under different control intensities Each is 
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different. When the control strength 𝑑𝑖 = 10, the network node state reaches the synchronization state at 

t=0.5; when the control strength ⅆ𝑖 = 20, the network node state reaches the synchronization state at t=0.3; 

when the control strength 𝑑𝑖 = 30, the state of the network node reaches the synchronous state at t=0.1. 

Therefore, it is concluded that under certain conditions, the time and stability of the synchronization of the 

network can be adjusted by adjusting the control intensity. In social networks, some network policies or 

network propaganda methods can be used to control the intensity of control; from the perspective of user 

consensus, if the viewpoint is a positive viewpoint, social network users can be encouraged or promoted to 

reach such a consensus. If the opinion is a negative opinion, the above-mentioned theories should be used 

to suppress or prevent the generation of this consensus. 

 

Ⅵ. CONCLUSION 

 

Based on the complex network synchronization theory, this paper optimizes the coupling delay 

complex network synchronization model. Considering the characteristics of real social networks, this paper 

improves the coupling delay complex network synchronization model from two aspects: user coupling 

delay and individual importance. Firstly, aiming at the problem of constant coupling time delay in the 

original synchronization model, according to the characteristics of uncontrollable time delay in real social 

networks, the concept of random time delay is proposed, that is, the time delay caused by the coupling of 

all nodes in the model is random; Secondly, aiming at the problem that the coupling strength between all 

nodes in the original model is the same, according to the concept of node importance in complex networks, 

the importance of user nodes in social networks is evaluated by using multi-attribute decision-making 

method, and the evaluation index is used as the weight to optimize the node coupling strength. By 

improving these two aspects, the optimized network model can better describe the law of synchronous 

evolution in social networks; Then, according to the Lyapunov stability theory, the conditions required to 

realize the clustering synchronization of social networks are derived; Finally, through the real social 

network data, the synchronous evolution experiment of social network is carried out by using the improved 

network synchronization model. The experimental results show that under the condition of meeting the 

network synchronization criterion, social networks can achieve cluster synchronization. According to this 

result, we can not only promote the network consensus conducive to the development of social networks 

through the synchronization criterion, but also suppress or prevent some harmful network consensus. 

Therefore, the model can not only accurately describe the synchronization phenomenon in social networks, 

but also help to understand the consensus evolution mechanism of social networks and regulate the 

synchronization risk. 
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