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Abstract: 

When the autonomous underwater vehicle (AUV) plans a path, there exist various problems, such as 

the difficulty in environmental modelling and the weak solution ability of algorithms facing global 

static environment, low autonomy and difficulties of path planning are exist in the process of obstacle 

avoidance planning in the face of local dynamic obstacles. To solve these problems, form concentric 

circles of path are used in polar coordinates, and a new path planning algorithm fusing global static 

and local dynamic which based on improved particle swarm optimization algorithm and velocity 

obstacle method is proposed under strict mobility constrains. In the environment model represented by 

polar coordinates, the optimal particle "mutation" process is introduced into the global static planning 

to enhance the algorithm's solving ability; in the process of local dynamic planning, the velocity 

obstacle method is used to solve the local collision range and safe path area to acquire the optimal 

obstacle avoidance path. 

Keywords: Autonomous underwater vehicles, Particle swarm Optimization (PSO) algorithm, Velocity 

– obstacles, The dynamic avoidance, Global path planning. 

 

I. INTRODUCTION 

 

In-depth exploration of the ocean requires more and more underwater equipment deployment. In the 

future, large-scale underwater vehicle networking and collaboration will have stricter constraints on the 

mobility of autonomous underwater vehicles and make path selection more difficult. Therefore, global 

static and local dynamic path planning algorithms with stronger solving abilities are needed. 

 

Particle swarm optimization (PSO) algorithm has the advantages of simple algorithm and rapid 

convergence, but the lack of information communication between particles, the "search" ability and 

"convergence" ability is difficult to balance perfectly, and the "trap" of local optimal solution is difficult 

to completely avoid. When using PSO algorithm to plan the global path, a large number of literature in 

particle swarm algorithm, by referring to other algorithms for fusion improvement, and improve the 

performance of particle swarm algorithm, achieved good results. In the study of global static path 
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planning, the reference [1] combines random sampling and uniform variation to update particles and 

generates high quality optimal paths in the path planning of high mobile rescue robot, but the search 

capability needs to be improved to obtain more secure activity space. The reference [2] proposes an 

environmental selection and matching selection strategy to gradually reduce the convergence rate during 

iteration, but the possibility of falling into the local optimum is also increased. The reference [3] 

temporarily accepts a little poor quality solution using the annealing algorithm by introducing a 

simulated annealing algorithm Features, optimize global search ability, improve local search accuracy, 

but the number of algorithm parameters also increase the computation and complexity. The reference [4] 

through the differential evolution process of genetic algorithm, generate new particles in the particle 

group algorithm, increase the information interaction ability of particle groups, but its excessive 

variation increases the unnecessary computation amount; 

 

Considering the actual Marine environment, the Marine environment model, objective function and 

optimization constraints were constructed. The multi-objective function was converted into a single 

objective function through the objective function weighting method, and the emphasis on each objective 

function was highlighted by adjusting the weighting weight. 

 

By improving the algorithm's solving and convergence ability, the weighted objective function is 

optimized to obtain the optimal or suboptimal solution, so as to complete the path planning task 

combining global static and local dynamic. 

 

II. GLOBAL STATIC PROGRAMMING BASED ON IMPROVED PARTICLE SWARM 

OPTIMIZATION (PSO) ALGORITHM 

 

2.1 The Obstacle Treatment and the Polar Coordinate Establishment 

 

In reality, the Marine environment is complex and changeable, and its obstacles are also of different 

shapes. In order to improve the calculation efficiency, this paper abstracts the obstacles into rectangular 

or circular objects. For obstacles with a length-width ratio less than 1.5, a circle is used to surround them. 

Obstacles with an aspect ratio greater than 1.5 are surrounded by rectangles. Considering the time delay 

required by the speed and direction adjustment of the underwater robot, a safety threshold value εwas 

added to the outside of the obstacle model, and the area within the obstacle model and the safety 

threshold value was set as the dangerous area. 

 

The polar coordinate system is established with the line between the starting point and the ending 

point as the polar axis, with negative clockwise and positive counterclockwise. Path concentric circles 

were established with the starting point as pole/center and the polar diameter of the circular obstacle as 

radius. The planned path is represented by path aggregation points P = P0, P1, ⋯ , Pi, Pi+1. The starting 
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point and ending point respect as Pi, Pi+1, and the i is the number of path nodes, which is the same as 

the number of path concentric circles.The path node is located on the path concentric circle, and the path 

node information is represented by the polar diameter Pm and polar Angle Pa. 

 

The position of the rectangular obstacle is determined by 4 vertices. In order to better reflect the 

obstacle information and improve the computational efficiency, 2 vertices are selected to establish path 

concentric circles. There are 2 selection methods according to the length of the polar diameters of the 

rectangular vertex: the 2 vertices with the longest and shortest polar diameters; 2 points of the sub-length 

and sub-length of the polar diameter. 

 

 

 

 

 

 

 

 

As Figure 1, when the vertices with the longest and shortest diameters are selected, obstacles will 

"protrude" between path nodes. It is a great challenge to the robot's turning performance to adjust the 

heading Angle close to the obstacle, and there is a high risk. Therefore, path concentric circles are 

established in Figure 2. 

 

 

 

 

 

 

 

 

 

Polar coordinates were established based on the starting point and obstacle information. Arc-shaped 

dotted lines were used to represent path concentric circles, and the center of concentric circles was the 

starting point. Circular and rectangular solid lines represent obstacles; The circular and rectangular 

dotted lines represent the boundary after the safe expansion threshold εof the obstacle.The global static 

environment information in the polar coordinate system is shown in Figure 3, where Path1 and path2 

Fig 1: Path concentric circle established by the longest and 

shortest vertices of polar radius 

 

Node 3 

starting point 

Node 2 

Fig 2: path concentric circle established by the second longest 

and the second shortest vertices of polar radius 

Node 1 

starting point Node1 Node3 

Node2 
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represent the path nodes existing on the path concentric circles, and will be represented by P1 and P2 in 

the set of path nodes. 

 

 

 

 

 

 

 

 

 

 

 

 

2.2 Build Fitness Function 

 

In the global path planning of underwater robot navigation, it is necessary to construct an optimal 

path from the start point to the end point. The optimal path not only meets the constraints of the robot's 

own velocity, acceleration and angular velocity, but also ensures the shortest path under the safety 

conditions. 

 

The path length function is established to represent the path length of the robot from the Start point 

to the End point, where L (.,.) Is the Euclidean distance of two path points, as follows: 

𝐽1 = ∑ 𝐿(𝑃𝑖 , 𝑃𝑖+1)𝑛
𝑖=0  (1) 

The path feasibility function is established to represent the navigational path feasibility, as follows: 

𝐽2 = ∑ 𝐷(𝑖)
𝑛
𝑖=0  (2) 

In order to prevent path-points from being located within obstacles or threshold areas, the risk 

function is set up as follows: 

𝐷(𝑖) ={
+∞,    𝑃𝑖−1𝑃𝑖 ∩ 𝑂𝐵 = ∅
0,        𝑃𝑖−1𝑃𝑖 ∩ 𝑂𝐵 ≠ ∅

 (3) 

Where, 𝐷(𝑖) represents the risk between the i point and the i-1 point; OB stands for danger area. If 

the path intersects the danger area, the danger degree is infinite. If they do not intersect, the risk is 0. 

 

The rotation feasibility function J3 is established to represent the rotation Angle feasibility of the 

robot during navigation, as follows: 

Start End 

Fig 3: obstacle model in the polar coordinate 
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𝐽3 = ∑ 𝑊𝑖
𝑛
𝑖=0   (4) 

The rotation evaluation function is established as follows: 

𝑊𝑖={
0,        |𝑤(𝑖)| ≤    𝑤𝑙(𝑖)

+∞,    |𝑤(𝑖)| >    𝑤𝑙(𝑖)
 (5) 

Where, the 𝑊𝑖 represents the rotation Angle of the robot at the point i;   wl(i) is the maximum 

rotation Angle of the robot. Since the autonomous underwater robot cannot adjust the head quickly, the 

rotation Angle of the robot is restrained. The J3 avoid turning angle is too large. 

 

Particle swarm optimization (PSO) is a decisive factor for approximating the optimal solution, and 

the choice of fitness function will directly affect the performance of the algorithm. In static obstacle 

environment, a feasible path with the shortest path length and maximum Angle of rotation is sought. 

 

The linear weighting method is adopted to transform J1,J2,J3 into a single objective function, and 

the fitness function is established as follows: 

𝐹𝑖𝑡(𝑖)= 𝑎1𝐽1 + 𝑎2𝐽2 + 𝑎3𝐽3   (5) 

If the path meets the navigation conditions, the fitness is the sum of the paths. If the path does not 

meet the navigation conditions, the fitness is infinite. In order to compare the advantages of particles, the 

following particle preference conditions are formulated: 

1) If 𝐹𝑖𝑡(𝑖) < 𝐹𝑖𝑡(𝑗), then particle i is superior to particle j; 

2) If 𝐹𝑖𝑡(𝑖) = 𝐹𝑖𝑡(𝑗), 𝑤(𝑖) < 𝑤(𝑗) ,then particle i is superior to particle j; 

2.3 Improved Particle Swarm Optimization (PSO) 

PSO algorithm is a random search algorithm, which designs a particle swarm to simulate a flock of 

birds. The particle in the flock has only two attributes: velocity V and position X, and the formula is: 

{
𝑉𝑖

𝑡+1 = 𝑤𝑖𝑉𝑖
𝑡 + 𝑐1𝑟1(𝑃𝑖

𝑡 − 𝑋𝑖
𝑡) + 𝑐2𝑟2(𝐺𝑖

𝑡 − 𝑋𝑖
𝑡)

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝑉𝑖
𝑡+1     (7) 

1 ≤ i ≤ N 

The selection and control of learning factor c1,c2 and inertia weight w and other parameters 

determine the performance of PSO algorithm to a certain extent.The learning factor is the reflection of 

the self-experience summary and learning ability of the particle, c1 remains large and the particle 

search range is large but the convergence is slow.c2 remains large and the particle can learn from group 

experience to achieve rapid convergence but small search scope .The algorithm needs to search in a wide 

range in the early stage and fast convergence in the late stage, so it needs c1 to be larger in the early 

stage and c2 larger in the late stage of the search, as follow: 

𝑐1,2 = 𝑐1,2𝑚𝑖𝑛 +
𝑟𝑢𝑛𝑚𝑎𝑥−𝑟𝑢𝑛

𝑟𝑢𝑛𝑚𝑎𝑥
× (𝑐1,2𝑚𝑎𝑥 − 𝑐1,2𝑚𝑖𝑛)    (8) 

Where, run is the current iteration number; runmax  represents the maximum number of 
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iterations; r1, r2 is a random number evenly distributed between 0 and 1. 

 

The inertia weight 𝑤 affects the global and local search ability, and an appropriate value of 𝑤 can 

balance the global and local search ability, so as to achieve strong search ability in the initial stage of the 

algorithm, fast convergence in the later stage, and obtain the optimal solution with fewer 

iterations.Therefore, the linear decreasing inertia weight is as follows: 

𝑤 = 𝑤𝑚𝑎𝑥 −
（𝑤𝑚𝑎𝑥−𝑤𝑚𝑖𝑛）×𝑟𝑢𝑛

𝑟𝑢𝑛𝑚𝑎𝑥
    (9) 

Where, wmax is the maximum inertia weight;wmin  is the minimum inertia weight;run is the 

current iteration number;runmax is the maximum number of iterations. 

 

The final convergence position of the particle is determined by the optimal position of the swarm and 

the optimal position of the individual history .The algorithm is in a state of slight convergence if the 

particle swarm is not found to be better than the historical optimum after several generations of updating. 

The "variation" process of genetic algorithm is introduced to make the optimal position "variation". Since 

the particle swarm falls into the local "trap" gradually, the optimal position of the swarm needs to be 

changed in combination with the solution stage, that is, different mutation ways should be adopted to 

guide the swarm to continue searching in a favorable direction. 

 

Define the dimensional distance between particle K and its contemporary best position: 

𝑑𝑘 =
1

𝑑
√∑ (𝑥𝑘𝑗 − 𝑔𝑏𝑗)2𝑑

𝑗=1    (10) 

Where, d is the algorithm dimension, in the global static planning the path node is i; The 

dimensional distance can reflect the particle aggregation to the one-dimensional interval comparison. If 

the fitness value of the algorithm is ideal and the particle aggregation degree is high, it indicates that a 

better position has not been found in the convergence process. At this time, the mutation should be 

carried out in a small range to avoid repeated search process. If the fitness is not high or the particle 

aggregation degree is low, it indicates that the search process is still in progress and the spatial search is 

not sufficient. Therefore, the variation is carried out in a large range to improve the global search ability 

and avoid falling into local extremum. When the algorithm is in the state of slight convergence, the 

optimal position after mutation is determined by the original optimal position and the variation range, 

and the variation range is constantly adjusted according to the convergence reason. 

γ (t) was defined as the range of optimal position variation. 

γ(t) = rand() × gb(t) × Fitbest    (11) 

Where,rand()  represents the random number  distributed on the interval of (0,1) evenly;gb(t) 

represents the original best position.The area of variation range was controlled by Fitbest;The closer the 

optimal position is to the ideal value, the smaller the fitness value is, the smaller the degree of location 



Forest Chemicals Review 

www.forestchemicalsreview.com 

ISSN: 1520-0191  

September-October 2021 Page No. 726-740 

Article History: Received: 22 July 2021 Revised: 16 August 2021 Accepted: 05 September 2021 Publication: 31 October 2021 

 

732 
 

variation is. 

 

2.4 Improved PSO Program 

 

The global path planning is divided into the following steps, as fig 4: 

 

Fig 4: flowchart of improved PSO algorithm in static obstacle environment 

 

1) Initialize the swarm, including setting the number and dimension of particles, the position and speed 

Initial swarm 

Calculate the fitness value 
of each Particle 

Update individual optimal 
solution and swarm optimal 
solution 

start 

Update the learning factor and 
inertia weights 

Update the speed and position of 
each particle 

variation 

Reach the number of 
iterations or meet the 
accuracy requirements 

End 

Y 

N 

N 

Y 
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of each particle, the maximum number of iterations 𝑟𝑢𝑛𝑚𝑎𝑥, initializing the inertia weight W and learning 

factor 𝑐1 ,𝑐2. 

 

2) Calculate particle fitness. 

3) Find the individual optimal solution and the swarm optimal solution according to the particle 

preference rule. 

 

3) Update learning factor and inertia weight, and update particle speed and position. 

 

5) After the specified update, if the particle still does not generate a new optimal swarm solution, it can 

judge whether it is in a state of slight convergence. If it is in a state of slight convergence, the optimal 

solution is varied and the 2nd step is carried out. Otherwise, proceed to Step 6th. 

 

6) If the number of iterations is reached 𝑟𝑢𝑛𝑚𝑎𝑥 and end the algorithm; Otherwise, go to step 2. 

 

III. LOCAL DYNAMIC PROGRAMMING BASED ON VELOCITY BARRIER METHOD 

 

3.1 Speed Barrier Method 

 

When the robot meets dynamic obstacles such as fish, floating objects and ships during navigation, it 

can change its head direction to bypass the obstacles or adjust its speed to avoid them. When the robot 

meets dynamic obstacles, if the speed needs to be adjusted as 𝑉𝑛𝑒𝑤, it should be as close to the optimal 

speed as possible. Firstly, the velocity coordinate system of the obstacle relative to the robot is constructed, 

and the map system of the obstacle relative to the robot is constructed by collecting data from the sonar 

system carried by the robot, including the position 𝑆𝑜𝑏𝜑 and distance 𝑆𝑜𝑏 of the obstacle relative to the 

robot. With the robot sonar position as the origin (0, 0), cartesian coordinate system 𝑂𝑠and robot body 

coordinate system (𝑋𝑎,𝑌𝑎) are established. The robot's heading is defined as axis Y, and the horizontal 

disposal is defined as axis X. Assume that in time ∆t, the heading Angle φ𝑟 of the robot, the speed 𝑣𝑟 is 

fixed. During robot navigation, cartesian coordinate system 𝑂𝑠 is updated with robot pose. When the 

robot sails at a fixed heading Angle φ𝑟 and speed 𝑣𝑟, the movement of the origin of the coordinate 

system on X-axis and Y-axis is expressed as(∆x, ∆y) 

∆x = 𝑣𝑟 ∗ ∆𝑡 ∗ cos(𝑣𝑟) ∗ cos(𝜑𝑟)    (12) 

∆y = 𝑣𝑟 ∗ ∆𝑡 ∗ cos(𝑣𝑟) ∗ sin(𝜑𝑟)     (13) 

It is assumed that in time ∆𝑡, the movement direction φ0 and speed 𝑣0 of the obstacle are fixed. 

Sonar detects the position of the obstacle relative to the current coordinate system position(𝑥1, 𝑦1), the 

newly measured position of the obstacle(𝑥2, 𝑦2). Then the position of the obstacle relative to the current 

coordinate system at the last moment is: 
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(𝑥21, 𝑦21) = (𝑥1 − ∆𝑥, 𝑦1 − ∆𝑦)      (14) 

The movement speed of the obstacle is: 

𝑣0 = √(𝑥1 − ∆𝑥 − 𝑥2)2 + (𝑦1 − ∆𝑦 − 𝑦2)2/∆𝑡    (15) 

The movement direction of the obstacle is: 

φ0 = 𝑎𝑟𝑐𝑡𝑎𝑛((𝑦21 − 𝑦2)/(𝑥21 − 𝑥2))     (16) 

 

According to the obstacle contour of sonar image, the length to width ratio of the obstacle is 

discriminated and then the obstacle is surrounded. As shown in Fig5, both robot A and obstacle B move in a 

fixed course and speed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The robot A is regarded as A particle, and the obstacle B is expanded according to the robot size and 

safety threshold. Calculate the relative velocity of A and B, 𝑉𝐵𝐴 = 𝑉𝐴 − 𝑉𝐵, and define the ray starting from 

point P along the direction of V as: 

λ(P, V) = {P + tV|t ≥ 0}  (17) 

When the rays λ𝐵𝐴 emitted from point A along the direction 𝑉𝐵𝐴 intersect with obstacle B, that is, 

when the rays λ𝐵𝐴 fall within the included Angle of two tangents of obstacle B relative to robot A, the two 

will collide, as shown in Fig 6. 

 

 B 

A 

 

B 

Fig 5: The motion of vehicle and obstacle 
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According to the velocity obstacle method, the collision range is defined as: 

𝑉𝑂𝐵
𝐴(𝑉𝐵) = {𝑉𝐴|𝜆(𝑃𝐴, 𝑉𝐴 − 𝑉𝐵) ∩ (𝐵 ⊕ −𝐴) ≠ ∅}    (18) 

A ⊕ B = {a + b|a ∈ A, b ∈ B} − A = {−a|a ∈ A}    (19) 

 

If the navigation state of robot A is not changed, the robot will collide with an obstacle at some point. In 

order to escape from the collision range, it needs to adjust its position to A safe area.𝑡1 According to the 

collision range, the complement of: 𝑉𝑂𝐵
𝐴 (𝑉𝐵) is the safe navigation area. 

 

3.2 Fitness Function 

 

Fig 7: relative velocity coordinate system of 

vehicle-obstacle 
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Fig 6: Determination of collision condition 
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The robot and obstacle relative velocity coordinate system is established as shown in Figure 7. 

 

In the global coordinate system (X, Y), the robot moves with speed VAand heading Angle α.Robot 

body coordinate system (Xa, Ya).O is the obstacle, and the velocity in the coordinate system (X, Y) is 𝑉𝑂, 

and the direction Angle 𝛽𝑂.𝐿𝑀𝑂,𝐿𝑁𝑂 is the tangent line on both sides of the robot obstacle;𝐿𝑂 is a directed 

line segment from the robot to any point 𝐶𝑂 on the edge of the obstacle.𝜃𝑂 is the positive Angle 𝐿𝑂 with 

the X-axis, and 𝛾𝐴𝑂  is the Angle 𝑉𝐴𝑂  with 𝐿𝑂 .The collision avoidance Angle 𝑉𝐴𝑂  is defined as the 

adjustment Angle for the robot to avoid obstacles.∆𝛾𝐴𝑂𝑙𝑜𝑤, ∆𝛾𝐴𝑂𝑢𝑝 respectively are 𝑉𝐴𝑂the rotation angles 

to 𝐿𝑀𝑂,𝐿𝑁𝑂, and let counterclockwise be positive. 

 

If the robot avoids an obstacle in the time interval [𝑡𝑘, 𝑡𝑘+∆𝑡], it should deviate from the collision range 

𝑂𝑖 in the time interval 𝑉𝐴𝑂𝑖, namely 𝑉𝑂𝐵
𝐴(𝑉𝐵), one of the following inequalities holds: 

−π ≤ ∆𝛾𝐴𝑂𝑖 ≤ ∆𝛾𝐴𝑂𝑙𝑜𝑤   (20) 

∆𝛾𝐴𝑂𝑢𝑝 ≤ ∆𝛾𝐴𝑂𝑖 ≤ π   (21) 

Assuming that the velocity of the obstacle in the interval [𝑡𝑘, 𝑡𝑘+∆𝑡] is constant, then 

∆𝛾𝐴𝑂𝑖 = ∆𝛾𝐴𝑂𝑖 ∗ ∆𝑡 = −
sin 𝜑𝐴𝑂𝑖

𝑉𝐴𝑂𝑖
∆𝑉𝐴 +

cos 𝜑𝐴𝑂𝑖

𝑉𝐴𝑂𝑖
∆𝑉𝐴 ∗ ∆𝛼 − ∆𝜃𝑂𝑖  (22) 

 

Where,∆𝜃𝑂𝑖 = 𝑉𝐴𝑂 = sin 𝛾𝐴𝑂𝑖/𝐿𝑂𝑖, collision avoidance Angle is determined by (∆𝑉𝐴, 𝑉𝐴∆𝛼）.It can be 

seen that adjusting the speed and heading of the robot are two effective behaviors for obstacle avoidance, 

and only one of them can basically fulfill the obstacle avoidance requirements. For the moving obstacles in 

the sub-target segment, the dimension number of particle swarm is fixed in two dimensions: the speed and 

heading of the robot, and its optimization adjustment variables are these two values. 

 

Establish the robot-target area relative velocity coordinate system, as shown in Figure 8, which is 

defined in the same way as the robot-obstacle relative velocity coordinate system. 
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Fig 8: relative velocity coordinate system of vehice-target 
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It is assumed that the end point of the robot sub-path is located in the feasible region G, and is the 

termination point 𝐶𝐺. It is expected to always point 𝑉𝐴𝐺, and the collision avoidance Angle 𝐶𝐺 is as close 

as possible to the included Angle between 𝑉𝐴𝐺 and 𝐿𝐺 , so as to ensure that the following formula is 

minimal: 

𝐽𝐺1 = |𝛾𝐴𝐺 +
sin 𝜑𝐴𝐺

𝑉𝐴𝐺
∆𝑉𝐴 −

cos 𝜑𝐴𝐺

𝑉𝐴𝐺
𝑉𝐴∆α + ∆𝜃𝐺|                       (23) 

 

In order to reduce yaw time and make the robot return to normal course as soon as possible, the 

minimum time function is established. Specifically, in the route direction before obstacle avoidance, when 

the speed of the robot's heading component is the maximum in this direction, yaw time can be the shortest, 

then 

𝐽𝐺2 =
∆ 𝑉𝐴𝐺𝑚𝑎𝑥

𝑉𝐴𝐺
−

cos 𝜑𝐴𝐺

𝑉𝐴𝐺
𝑉𝐴 −

𝑉𝐴sin 𝜑𝐴𝐺

𝑉𝐴𝐺
∆α         (24) 

 

Using linear weighting method, the objective function 𝐽𝐺1，𝐽𝐺2 is respectively normalized into a single 

objective function, and the single objective function is obtained as follows: 

𝐹(𝑖) = 𝜔1𝐽𝐺1 + 𝜔2𝐽𝐺2               (25) 

 

Where, 𝜔1 and 𝜔2 are the weights of 𝐽𝐺1 and 𝐽𝐺2, respectively. Considering that in the process of 

dynamic obstacle avoidance, the rotation Angle is required to be higher and the change of speed is required 

to be smaller, when the parameter value is selected, and 𝜔1 > 𝜔2,and 𝜔1 + 𝜔2 = 1. 

 

Path planning in a dynamic obstacle environment is planned among path nodes, and obstacle avoidance 

is carried out during the navigation of the current waypoint to the next waypoint. The specific algorithm 

flow is shown in Fig 9. 
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IV. CONCLUSION 

 

In this paper, based on the passive sonar equation, the narrow-band underwater acoustic detection 

modeling of underwater vehicle is completed and the safety situation analysis of underwater vehicle is 

carried out by focusing on the main parameters of acoustic performance, such as sound source level, 

underwater acoustic propagation loss and array gain, combined with numerical calculation. The main 

conclusions are as follows: 

 

The peak line spectrum of underwater vehicle radiated noise has a significant influence on the detection 

efficiency of receiver. The vibration and noise reduction design of low and medium frequency line spectrum 

noise should focus on the control of line spectrum. 

 

The detection range varies greatly along each direction Angle θ, and the main factors affecting the 

detection range include the sound absorption effect of seawater and the intensity of target sound radiation. 

 

With the increase of analysis frequency, the spectral density level of sound source of underwater vehicle 

structure shows a general trend of decline 

alternate path 

Speed obstacle model 

N dynamic 

collision 

Advance along sub goal 

Y 

Maritime rules binding 

Improved particle  

Settlement dynamic obstacle  

Fig 9: Flowchart of improved PSO algorithm in 

dynamic obstacle environment 

  swarm optimization 

avoidance 
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