
Forest Chemicals Review 
www.forestchemicalsreview.com 
ISSN: 1520-0191  
September-October 2022 Page No. 151-164 
Article History: Received: 05 April 2022, Revised: 27 April 2022, Accepted: 03 May 2022, Publication: 14 May 2022 

 

151 
 

LPSST: Improved Transformer Based Drainage 

Pipeline Defect Recognition Algorithm 

Pengtao Jia, Muyuan Guo
*
 

College of Computer Science & Technology, Xi’an University of Science and Technology, Xian, China 

 

Abstract: 

The health status of underground drainage pipelines affects the normal operation of urban drainage 

systems, but the current mainstream drainage pipeline defect recognition methods have the problems of 

poor recognition for small samples and fine-grained target defects, as well as low model generalization. 

Therefore, this paper proposes an improved semi-supervised transformer network based on local region 

proposal for drainage pipeline defect recognition (LPSST). The algorithm uses the hierarchical Swin 

Transformer as the backbone network, and adds a local region proposal module to the shallow network to 

fully pay attention to local features. Finally, a semi-supervised learning framework is used for intensive 

training to enhance model generalization. We studied the recognition performance of the algorithm in 

self-made drainage pipeline defect dataset. Compared with other mainstream algorithms such as Resnet 

and Efficentnet, LPSST has a recognition accuracy of 92.65% for 4 similar defects such as mismatch and 

deformation, exceeding 17.25% of the original backbone network. The algorithm verifies the applicability 

of Transformer architecture for the task of drainage pipeline defect recognition, and investigates the 

positive impact of semi-supervised learning on deep model training. 

Keywords: Drainage pipeline defect recognition, Transformer, Semi-supervised, Local proposal, 

Fine-grained image recognition. 

 

I. INTRODUCTION 

 

The health status of underground drainage pipelines affects the normal operation of urban drainage 

systems. Accordingly, it is quite necessary to regularly test the drainage pipeline to fully understand the 

sound status of the pipeline [1]. In the technical method commonly used in the detection of drainage 

pipeline defects, professionals interpret the internal video of the pipeline captured by the inspection robot, 

and then classify and grade the pipeline defects. However, this defect recognition method relies too much 

on the inspectors’ experience, which has the problems of low efficiency and high error rate, so 

maintenance and repair of urban underground drainage pipelines is affected. Afterwards, drainage pipeline 

defect recognition methods based on traditional image processing technology and deep learning model 

have been proposed one after another, but mostly have problems of low efficiency and high false detection 

rate, especially with poor recognition effect for pipeline similarity feature defects such as mismatch and 

deformation. 
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In view of the above problems, one motivation of this paper is to use the visual Transformer 

architecture based on the attention mechanism as the backbone network, take advantage of its good 

parallelism and long-distance dependency support to perform effective modeling. A local region proposal 

module is introduced to fully learn global and local features of pipeline defect images. The detection 

algorithms based on traditional convolutional neural networks are mostly constrained by the local 

correlation and rotation invariance in convolution operation, which cannot better combine the local and 

global image features. When faced with a large amount of data, these offsets will hinder the model 

performance [2]. In 2020, the Google Brain team published vit [3], which for the first time applied the 

standard Transformer encoder directly to images, and achieved image classification effects that surpassed 

mainstream CNNs in ImageNet linear evaluation, thus becoming the first work of Transformer in the field 

of computer vision. In this work, we study the performance of the visual Transformer architecture in the 

task of drainage pipeline defect recognition, and the improved algorithm achieves competitive 

classification accuracy. 

 

Another motivation is to avoid the label dependence of deep models, and use semi-supervised learning 

for intensive training to enhance the model generalization and make it more adapted to the application 

requirements of drainage pipeline defect recognition. The deep model performance mostly depends on the 

supervised learning of massive image data. However, in the practical application of the defect recognition 

of underground drainage pipelines, the unlabeled image data is easy to access, while labeled data relies on 

the manual annotation of professionals. It is a labor-intensive work to build a large-scale dataset for 

drainage pipeline defect detection, so it is important to learn efficiently using a small amount of labeled 

data. Semi-supervised learning, as a recently popular direction in the field of deep learning, requires only a 

small amount of labeled data to complete the relatively robust deep model training task. In this work, we 

study how to use unlabeled data to strengthen the pre-training model so that it conforms to the clustering 

hypothesis, and then a more generalizable model is established. 

 

In order to help the engineers quickly and accurately complete the detection, analyze the defect 

characteristics and severity in time, this paper proposes an improved semi-supervised Transformer 

drainage pipeline defect recognition algorithm based on local region proposal—LPSST. The main 

contributions of this paper are briefly summarized as follows: 

 

(1) The small sample category data is appropriately expanded by adjusting the image sharpness, color 

saturation and other color perturbation data enhancement methods, which alleviates the problem of 

unbalanced categories in the self-made drainage pipeline dataset. 

 

(2) A local region proposal module is introduced into the shallow network of the backbone network to 

improve local feature extraction. By setting a reasonable mask, the self-attention range is limited to a 

specific local area, so that equivalence calculation is possible when the number of windows is not 

significantly increased. 

 

(3) By using a semi-supervised learning framework that integrates consistency regularization and 
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pseudo-labels for intensive training of the model, the model accuracy and generalization are greatly 

improved, demonstrating remarkable experimental effect. 

 

II. RELATED WORK 

 

2.1 Based on Traditional Vision Algorithm 

 

With the continuous development of computer vision technology, scholars at home and abroad attempt 

to use traditional computer vision algorithms to determine drainage pipeline defects. In 2002, Fieguth et al. 

segmented pipeline images based on morphological methods to extract geometric features, and then 

recognized images using fuzzy neural networks [4]. In 2008, Ming-Der Yang team from Taiwan 

performed wavelet transform processing on pipeline images to gather co-occurrence matrix and texture 

features. Then, machine learning methods were used for automatic detection of drainage pipeline defects 

[5]. In 2012, Motamedi et al. performed grayscale, filtering, and morphological preprocessing operations 

on drainage pipeline images, which provided a theoretical basis for non-destructive testing of urban 

drainage pipeline defects [6]. Kirstein S et al. integrated the shortest path algorithm, Hough straight line 

transform algorithm and Canny edge detection method to detect drainage pipeline defects [7]. In 2014, 

based on the prior information and visual features related to the inner surface cracks of the drainage 

pipeline, Mahmoud et al. adopted Sobel edge detection method to detect the candidate crack edges, thus 

fulfilling the detection of drainage pipeline crack defects [8]. In 2016, in view of characteristics of 

industrial-grade drainage pipeline defects, Mayuri et al. converted the RGB image of the pipeline into a 

grayscale image and then completed the detection and recognition based on the extracted industrial 

pipeline diameter defects and structural defects [9]. In 2017, Zhonghu Li et al. proposed an image edge 

detection algorithm based on back-propagation neural network (BP), which was used to detect the edge of 

the corrosion defect image for the inner wall of the drainage pipeline [10]. 

 

Drainage pipeline defect detection technology based on traditional computer vision has achieved 

certain research results, but there are still problems such as high requirements for input image quality, too 

complicated preprocessing, low generalization, low recognition rate, and single detection defect category. 

 

2.2 Based on Deep Learning 

 

With the development of deep learning-based image technology theory, researchers have gradually 

applied deep learning models to the field of drainage pipeline defect detection. In 2018, Jack C.P. Cheng et 

al. proposed a drainage pipeline defect detection method based on Faster R-CNN [11] 

(Region-Convolutional Neural Network) [12], which allows accurate detection of pipeline cracks, 

sediments, infiltration and other defects. Moreover, it was pointed out that, by increasing dataset size and 

number of convolutional layers, it is possible to effectively improve the algorithm performance. In 2019, 

Dirk Meijer et al. from the Netherlands proposed a classification network structure based on Convolutional 

Neural Network (CNN) and applied it to defect detection of drainage pipelines [13]. In the same year, Bing 

Lv et al. proposed a CNN-based intelligent detection method for drainage pipeline defects in closed-circuit 
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television (CCTV) video frames [14]. In 2020, Maohui Zheng et al. used Genetic Algorithm (GA) to 

optimize the Extreme Learning Machine (ELM) neural network, which provided a new data-driven 

modeling method for the recognition and diagnosis of urban drainage pipeline defects [15]. In 2021, 

Qianqian Zhou et al. proposed an intelligent detection and classification method for drainage pipeline 

defects based on convolutional neural networks [16]. 

 

The drainage pipeline defect detection and recognition method based on deep learning model improves 

the recognition rate for pipeline defect types. However, due to the influence of the deep model itself, there 

are still problems such as slow detection rate and low accuracy in fine-grained defect detection. 

 

Regarding the problem of low accuracy in feature detection under limited discrimination and low 

generalization of the model with limited label data amount, this paper studies how to integrate global and 

local effective feature information, and uses a semi-supervised reinforcement training framework for 

effective learning of a small amount of label data to establish a high generalization model and achieve 

accurate recognition of drainage pipeline defects with similar characteristics. 

 

III. MAIN METHODS 

 

3.1 Model Structure 

 

The overall structure of the LPSST algorithm is shown in Fig 1. With Swin Transformer [17] as the 

backbone network, the algorithm is improved based on the structural defect image characteristics of the 

drainage pipeline. The algorithm pre-training model uses the color perturbation-based data enhancement 

method to expand the small sample category label data, integrates the Transformer encoder based on 

feature area screening to perform feature extraction. The detection head recognizes and outputs the defect 

category. After the unlabeled data is weakly/strongly perturbed, it is input to the pre-trained model, and the 

intensive training is completed by virtue of two semi-supervised learning methods of pseudo label and 

consistency regularization. Finally, the original pre-trained model is updated with the trained parameters to 

establish the final recognition model. 

 
 

Fig 1: A schematic diagram of the model structure based on LPSST algorithm 
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3.2 Selection of Backbone Network 

 

As one of the mainstream backbone networks in the current Vision Transformer field, Swin 

Transformer displays performance comparable to mainstream CNNs [18] in various image tasks. The 

network introduces the hierarchical idea of CNNs and proposes a cascaded Transformer, which merges 

image blocks layer by layer in depth to build a pyramid structure. Particularly, the prominent contribution 

of the network is the design of shifted window attention mechanism. By setting a reasonable mask, the 

self-attention range is limited to non-overlapping local windows, which allows equivalent calculation 

without significant increase in the number of windows. The layered architecture of Swin Transformer 

demonstrates multi-scale modeling flexibility. Suitable for image classification and dense detection tasks, 

it has linear computational complexity for image size, which can evaluate the performance in downstream 

tasks such as object detection and semantic segmentation. 

 

In this work, Swin-T, a lightweight version of Swin Transformer, is used as the backbone network. 

Swin-T has similar complexity to ResNet-50 [19], which guarantees a balance between model speed and 

accuracy. which keeps the balance between the model computation speed and accuracy. 

 

3.3 Local Region Proposal Module 

 

In drainage pipeline detection, it is found that the structural defects of some drainage pipelines have 

highly similar characteristics. Moreover, amid pipeline image acquisition, the camera position angle is 

relatively fixed, making it impossible to capture a full-angle image around a defect. Therefore, images 

collected by drainage pipeline defect detection often have different defect types and highly similar features. 

As shown in Fig 2, the four images represent four kinds of drainage pipeline structural defects: mismatch, 

deformation, undulation, and disjointness. Defect characteristics displayed by such images are slightly 

different, making misrecognition easily occur in recognition of deep learning model network. Easily 

affected by the experience of the inspector, manual recognition is prone to wrong classification. 

 

 
  (a) Mismatch            (b) Deformation 

 
  (c) Undulation           (d) Disjointness 

Fig 2: Drainage pipeline defect categories with similar characteristics 
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According to the image feature representation of drainage pipeline structural defects, highly similar 

feature defects mean that the model network must capture more subtle feature differences to achieve 

accurate defect recognition. This paper draws on the idea of designating local areas for fine-grained feature 

extraction in fine-grained visual classification, which is to combine global features to form the final feature 

representation, enhance local and global correlation, and improve classification accuracy. The local area 

proposal module is designed and added in Swin-Transformer, and the specific structure diagram is shown 

in Fig 3. 

 

 
 

Fig 3: Backbone network structure integrating local proposal module 

 

The activation average ωα  is calculated based on the window feature map 
Aω mapped to each 

window. As shown in Equation 1, 
Hω , 

Wω represent the window height and width, respectively. 
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After calculating the activation average ωα  of all windows, all the ωα  is sorted. A higher ωα  value 

corresponding to the window means that the window area contains more information. The background of 

drainage pipeline defect image is mostly pure color inner wall of drainage pipeline. The information is 

relatively monotonic, so window selection is performed based on non-maximum suppression (NMS). The 

input of NMS is all possible predicted bounding box (Equation 2) and a given iou threshold, while the 

output is the predicted bounding box filtered by the NMS algorithm (Equation 3). 

 

      _ , _ , _ , _ , , * , , *predictions x max x min y max y min score     (2) 

 

      _ , _ , _ , _ ,result x max x min y max y min score  (3) 

 

NMS filters out windows with higher ωα values for retention, constructs key areas, and uses 
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reasonable mask output to mask the discarded window areas in screening. It then establishes a new feature 

image of the same dimension for input to the next stage of the network. The specific module process is 

shown in Fig 4. 

 

 
 

Fig 4: Local region proposal module process 

 

3.4 Semi-supervised Reinforcement Training 

 

Fix Match [20] is a semi-supervised learning method proposed by the Google Brain team. Different 

from other semi-supervised methods, Fix Match uses cross-entropy to compare the unlabeled data with 

weak enhancement and strong enhancement for consistency regularization. 

 

The core of consistency regularization is to hope that a sample and its disturbed samples will get 

similar outputs after the classifier processing, mainly by maintaining consistency in predictions before and 

after unlabeled data enhancement (disturbance), so that the learned decision boundary is located in a 

low-density area, and no specific label is required. By constructing an unsupervised regularization loss 

term between the perturbed prediction result Y and the normal prediction result y on the unlabeled data, 

the model generalization ability is strengthened. Its expression is shown in Equation 4. 

 

      | ,θ , | ,θmodel modelD p y Augment x p Y Augment x 
 

 (4) 

 

Where, D is the metric function, generally KL divergence or JS divergence is used, and cross entropy 

is used in this chapter. Augment (∙) is a data augmentation function used to add some noise perturbations, 

with  representing model parameters. 

 

The semi-supervised training of Fix Match performs normal supervised learning on labeled data. The 

loss function SL adopts the common standard cross-entropy loss function, and its mathematical expression 

is shown in Equation 5: 

 

    
1

1
, | α

B

S b m bb
L H p p y x

B 
   (5) 

 

Where, B is the batch size of the labeled samples, bx is the training sample, and bp is the one-hot label. 
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 |mp y x  is used as category distribution predicted by the model network input x .  α  Represents the form 

of weak enhancement used. 

 

For the unlabeled data, the reinforcement training of the model is completed through the following four 

steps: 

 

(1) Weak and strong enhancement of unlabeled data; 

 

(2) Use the trained model to make predictions on the augmented samples. For weakly enhanced 

samples, if the highest prediction probability argmax( )b bQ q  of the predicted result exceeds the set threshold, 

it is considered as a valid sample, and the result is assigned to the sample as a pseudo-label. Otherwise, the 

sample is ignored. 

 

(3) For strongly enhanced samples, the prediction results output by the model and the pseudo-labels are 

used for loss calculation to obtain the loss function uL . The specific calculation process is shown in 

Equation 6. 

 

       
μB

1

1
, |

μB
u b b m bb

L max q H Q p y u


  τ Α  (6) 

 

Where, τ represents the scalar hyperparameter of the threshold. When  bmax q  τ , retain the 

pseudo-label of the corresponding data. 

 

(4) Calculate the final loss function s uLoss L L  λ  of the model. λ  Is a fixed scalar hyper parameter. 

Thus, reverse gradient propagation is performed on Loss  to complete the update of the entire model 

network. 

 

IV. EXPERIMENTS 

 

4.1 Dataset 

 

Pipeline closed-circuit television detection (CCTV) technology is so far one of the most widely used 

technologies in the detection of urban underground drainage pipelines. It has been widely used in status 

detection of rainwater pipelines and sewage pipelines, which runs through the whole stage of pipeline 

construction and acceptance [21]. This paper conducts experiments on the self-made dataset for CCTV 

drainage pipeline defect recognition. 

 

In order to make full use of the training samples to prevent over-fitting, regarding the problem of 

long-tailed dataset presented by self-made drainage pipeline dataset, data enhancement is performed to 
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expand the data of small sample categories, achieve the balance between classes and reduce the offset 

probability of the model network during training. Considering that most of the drainage pipe defect images 

are irrelevant backgrounds, and that defects only occur in small local positions, operations such as simple 

random rotation, flipping cannot achieve a good expansion effect. 

 

Therefore, by adjusting the four values of image sharpness, brightness, color saturation, and contrast 

and combining them randomly, this paper uses color perturbation-based data enhancement to increase or 

decrease some color components in the color space. The experimentally validated method can achieve 

efficient data enhancement without loss of details of drainage pipeline defects. The effect after data 

enhancement is shown in Fig 5. 

 

 

 
 

Fig 5: comparison of renderings after data enhancement (the upper left shows the original image, the upper 

right shows the contrast enhancement, the lower left shows the color saturation enhancement, and the lower 

right shows the brightness reduction) 

 

The four types of drainage pipeline structural defects, including mismatch, disjointness, deformation, 

and undulation, are sorted and the small sample data categories are expanded until a unified number to 

form a drainage pipeline defect recognition dataset of 2,500 images per category, with an image size of 

800 × 800. Table Ⅰ shows the relevant information of the four types of structural defect images. 

 

TABLE Ⅰ. Drainage Pipeline Defect Recognition Dataset 

 

CATEGORY 

NO. 

DEFECT 

CATEGORY 

CATEGORY 

ABBREVIATION 
QUANTITY IMAGE EXAMPLE 

0 Deformation BX 2500 

 

1 Mismatch CK 2500 
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2 Undulation QF 2500 

 

3 Disjointness  TJ 2500 

 
 

4.2 Comparison of Experimental Results and Analysis 

 

In order to verify the reasonable validity of the LPSST algorithm, several variants of the improvement 

process are investigated in the comparative experiments in this section, including improvement based on 

local region proposal and semi-supervised learning. The purpose of this setting is not to compare methods 

directly, but to evaluate whether our improvement can effectively enhance model performance. 

Under the same experimental conditions, six groups of LPSST models were comparatively tested 

respectively, namely Swin-Transformer, Resnet50, Densenet [22], Efficientnet [23], and the backbone 

network Swin-Transformer-LPM with local region proposal module, and finally integrated with 

semi-supervised reinforcement training. The comparison is based on four parameters: the highest accuracy 

rate (TopAcc@1), the average accuracy rate (Mean Acc), the number of parameters (Param), and the 

computational complexity (FLOP). The specific experimental results are shown in TABLE Ⅱ. 

 

TABLE Ⅱ. Comparison of recognition results of different networks 

 

MODEL NETWORK TOPACC@1 MEANACC PARAMS（M） FLOPs（G） 

CNN-based models 

Resnet50 70.00% 67.90% 25.26 3.53 

Densenet 71.70% 69.20% 7.98 2.79 

Efficentnet 71.10% 68.60% 5.28 0.39 

Transformer-based models 

Crossformer 73.40% 70.80% 30.7 4.9 

Focal-Transformer 74.30% 70.90% 29.1 4.8 

Swin-Transformer 75.40% 71.01% 28.28 4.35 

Swin-Transformer-LPM 76.20% 71.94% 29.21 4.49 

Semi-supervised training 

LPSST 92.65% 91.86% 27.52 4.34 
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Resnet-SSL 91.25% 89.26% 25.26 3.53 

 

According to the data analysis in TABLE Ⅱ, compared with the traditional convolutional network, the 

improved original backbone network Swin-Transformer achieves the best accuracy results. Compared with 

ResNet with the same complexity structure, small growth is exhibited in both the parameter amount and 

computational complexity, possibly because the small data amount is insufficient to display advantages of 

massive data in the Transformer architecture. After local region proposal module is added, the model 

accuracy is further improved. After intensive training of the Swin-Transformer-LPM pre-training model 

with the help of the semi-supervised learning framework, the final LPSST model achieves the best 

accuracy rate of 92.65%, with a linear improvement of 17.25% compared with the original 

Swin-Transformer. At the same time, the parameter number and computational complexity are slightly 

reduced. In addition, ResNet model incorporating semi-supervised learning experiences a significant 

increase in performance. In summary, the comparative experimental results fully demonstrate the 

reasonable effectiveness of the LPSST algorithm improvement. The algorithm achieves a substantial 

improvement in the classification and recognition performance, and verifies the high representation ability 

of semi-supervised learning. 

 

4.3 Ablation Experiment 

 

In order to investigate the influence of certain variables (or methods) on the model performance, this 

section still selects the same dataset for ablation research. One parameter is changed for each ablation, and 

the final parameter values of the pre-training model are maintained constant in the remaining parameter 

configurations. 

 

(1) The proportion of the number of samples with and without labels 

 

In order to better investigate the influence of the number of labeled samples on the performance of the 

semi-supervised learning model, relevant ablation research was carried out, with the number of labeled 

samples set as: 1000, 3000, 6000, 9000. The number of unlabeled samples was kept at 9000, and 

comparison test was carried out to investigate the influence of different proportions of samples with and 

without labels on the recognition results. The specific results are shown in TABLE Ⅲ. 

 

TABLE Ⅲ. Experimental Comparison of Different Labeled Sample Sizes 

 

NUMBER OF 

LABELED DATA 

PROPORTION OF 

LABELED 

SAMPLES 

TOPACC@1 MEANACC 

1000 1：9 79.32% 75.80% 
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3000 1：4.5 84.82% 80.40% 

6000 1：2.5 92.65% 91.86% 

9000 1：0.1 82.83% 79.67% 

 

According to the data analysis in Table 3, when the proportion of labeled samples is 1:2.5 (6000 

labeled samples and 9000 unlabeled samples), the LPSST model has the best recognition effect, with an 

accuracy rate of 92.65%. For its reason, a small proportion of labeled data will affect the generation of 

pseudo-labels, which will affect model training and reduce model performance. A great proportion of 

labeled data will reduce the generalization performance of the model, leading to overfitting in model 

training. 

 

(2) Optimizer 

 

Model instability appears during the training process, possibly because the training of the 

semi-supervised learning method is quite sensitive to the optimizer selection. In order to reduce the 

instability and seek the best training strategy for the LPSST algorithm, in this section, different optimizer 

types are selected as hyperparameters, and the experimental configurations of other models are kept 

unchanged to investigate the impact of training in different ways on model performance. 

 

By default, we use Adam W [24] as the optimizer, which is a common choice for training vit models [3, 

17, 25]. In addition, two common SGD and LARS optimizers are used for experiments. The specific 

experimental results are shown in TABLE Ⅳ. 

 

TABLE Ⅳ. Experimental comparison of different optimizers 

 (the number of labeled data is 6000) 

 

OPTIMIZER TOPACC@1 MEANACC 

SGD 79.32% 78.34% 

LARS 82.88% 81.65% 

AdamW 92.65% 91.86% 

 

According to analysis of the results in Table 4, under this training condition, the model trained by the 

optimizer Adam W achieves the best recognition accuracy, and the SGD commonly used in the CNN 

model performs poorly in the Transformer backbone network. Hence, Adam W is finally selected as the 

training optimizer for the LPSST algorithm in this paper. 
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V. CONCLUSION 

 

This paper designs an improvement scheme from three perspectives: small sample category data 

expansion, enhancement of local and global feature information capture, and semi-supervised learning. 

Finally, the drainage pipeline defect recognition algorithm was established with the improved 

semi-supervised Transformer based on local proposal (LPSST). Experiments show that LPSST can achieve 

high-precision recognition of four fine-grained structural defects of drainage pipelines, with recognition 

performance significantly improved. 

 

The deep learning method is applied to the intelligent detection and recognition of urban underground 

drainage pipeline defects, and satisfactory detection and recognition results have been achieved, but there 

are still problems such as slow detection rate and model performance susceptible to the label data quality. 

In the later period, we plan to further complete the algorithm optimization from the aspects of deep model 

lightweight and active model learning ability. It is hoped that this simple baseline will inspire researchers 

to reconsider the role of semi-supervised representation learning in practical engineering applications. 
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